1
|
Zimmermann L, Chlanda P. Cryo-electron tomography of viral infection - from applications to biosafety. Curr Opin Virol 2023; 61:101338. [PMID: 37348443 DOI: 10.1016/j.coviro.2023.101338] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/25/2023] [Accepted: 05/28/2023] [Indexed: 06/24/2023]
Abstract
Cellular cryo-electron tomography (cryo-ET) offers 3D snapshots at molecular resolution capturing pivotal steps during viral infection. However, tomogram quality depends on the vitrification level of the sample and its thickness. In addition, mandatory inactivation protocols to assure biosafety when handling highly pathogenic viruses during cryo-ET can compromise sample preservation. Here, we focus on different strategies applied in cryo-ET and discuss their advantages and limitations with reference to severe acute respiratory syndrome coronavirus 2 studies. We highlight the importance of virus-like particle (VLP) and replicon systems to study virus assembly and replication in a cellular context without inactivation protocols. We discuss the application of chemical fixation and different irradiation methods in cryo-ET sample preparation and acquisition workflows.
Collapse
Affiliation(s)
- Liv Zimmermann
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Komu JG, Jamsransuren D, Matsuda S, Ogawa H, Takeda Y. Efficacy Validation of SARS-CoV-2-Inactivation and Viral Genome Stability in Saliva by a Guanidine Hydrochloride and Surfactant-Based Virus Lysis/Transport Buffer. Viruses 2023; 15:v15020509. [PMID: 36851723 PMCID: PMC9959814 DOI: 10.3390/v15020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
To enhance biosafety and reliability in SARS-CoV-2 molecular diagnosis, virus lysis/transport buffers should inactivate the virus and preserve viral RNA under various conditions. Herein, we evaluated the SARS-CoV-2-inactivating activity of guanidine hydrochloride (GuHCl)- and surfactant (hexadecyltrimethylammonium chloride (Hexa-DTMC))-based buffer, Prep Buffer A, (Precision System Science Co., Ltd., Matsudo, Japan) and its efficacy in maintaining the stability of viral RNA at different temperatures using the traditional real-time one-step RT-PCR and geneLEAD VIII sample-to-result platform. Although Prep Buffer A successfully inactivated SARS-CoV-2 in solutions with high and low organic substance loading, there was considerable viral genome degradation at 35 °C compared with that at 4 °C. The individual roles of GuHCl and Hexa-DTMC in virus inactivation and virus genome stability at 35 °C were clarified. Hexa-DTMC alone (0.384%), but not 1.5 M GuHCl alone, exhibited considerable virucidal activity, suggesting that it was essential for potently inactivating SARS-CoV-2 using Prep Buffer A. GuHCl and Hexa-DTMC individually reduced the viral copy numbers to the same degree as Prep Buffer A. Although both components inhibited RNase activity, Hexa-DTMC, but not GuHCl, directly destroyed naked viral RNA. Our findings suggest that samples collected in Prep Buffer A should be stored at 4 °C when RT-PCR will not be performed for several days.
Collapse
Affiliation(s)
- James Gitau Komu
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
- Department of Medical Laboratory Sciences, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Dulamjav Jamsransuren
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Sachiko Matsuda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
| | - Yohei Takeda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro 080-8555, Hokkaido, Japan
- Correspondence: ; Tel.: +81-155-49-5896
| |
Collapse
|
3
|
Wang Z, Liang Z, Wei R, Wang H, Cheng F, Liu Y, Meng S. Quantitative determination of the electron beam radiation dose for SARS-CoV-2 inactivation to decontaminate frozen food packaging. Virol Sin 2022; 37:823-830. [PMID: 36309306 PMCID: PMC9605788 DOI: 10.1016/j.virs.2022.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from cold-chain foods to frontline workers poses a serious public health threat during the current global pandemic. There is an urgent need to design concise approaches for effective virus inactivation under different physicochemical conditions to reduce the risk of contagion through viral contaminated surfaces of cold-chain foods. By employing a time course of electron beam exposure to a high titer of SARS-CoV-2 at cold-chain temperatures, a radiation dose of 2 kGy was demonstrated to reduce the viral titer from 104.5 to 0 median tissue culture infectious dose (TCID50)/mL. Next, using human coronavirus OC43 (HCoV-OC43) as a suitable SARS-CoV-2 surrogate, 3 kGy of high-energy electron radiation was defined as the inactivation dose for a titer reduction of more than 4 log units on tested packaging materials. Furthermore, quantitative reverse transcription PCR (RT-qPCR) was used to test three viral genes, namely, E, N, and ORF1ab. There was a strong correlation between TCID50 and RT-qPCR for SARS-CoV-2 detection. However, RT-qPCR could not differentiate between the infectivity of the radiation-inactivated and nonirradiated control viruses. As the defined radiation dose for effective viral inactivation fell far below the upper safe dose limit for food processing, our results provide a basis for designing radiation-based approaches for the decontamination of SARS-CoV-2 in frozen food products. We further demonstrate that cell-based virus assays are essential to evaluate the SARS-CoV-2 inactivation efficiency for the decontaminating strategies.
Collapse
Affiliation(s)
- Zihao Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhentao Liang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongguo Wei
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,University of Chinese Academy of Sciences, Beijing, 100049, China,Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, China
| | - Hongwei Wang
- China Isotope and Radiaton Corporation, Beijing, 100089, China
| | - Fang Cheng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- Changchun CNNC CIRC Radiation Technology Co., LTD, Changchun, 130022, China
| | - Songdong Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China,Corresponding author
| |
Collapse
|
4
|
Pikalo J, Porfiri L, Akimkin V, Roszyk H, Pannhorst K, Kangethe RT, Wijewardana V, Sehl-Ewert J, Beer M, Cattoli G, Blome S. Vaccination With a Gamma Irradiation-Inactivated African Swine Fever Virus Is Safe But Does Not Protect Against a Challenge. Front Immunol 2022; 13:832264. [PMID: 35558083 PMCID: PMC9088005 DOI: 10.3389/fimmu.2022.832264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/25/2022] [Indexed: 11/19/2022] Open
Abstract
African swine fever (ASF) is among the most devastating viral diseases of pigs and wild boar worldwide. In recent years, the disease has spread alarmingly. Despite intensive research activities, a commercialized vaccine is still not available, and efficacious live attenuated vaccine candidates raise safety concerns. From a safety perspective, inactivated preparations would be most favourable. However, both historical and more recent trials with chemical inactivation did not show an appreciable protective effect. Under the assumption that the integrity of viral particles could enhance presentation of antigens, we used gamma irradiation for inactivation. To this means, gamma irradiated ASFV “Estonia 2014” was adjuvanted with either Polygen™ or Montanide™ ISA 201 VG, respectively. Subsequently, five weaner pigs per preparation were immunized twice with a three-week interval. Six weeks after the first immunization, all animals were challenged with the highly virulent ASFV strain “Armenia 2008”. Although ASFV p72-specific IgG antibodies were detectable in all vaccinated animals prior challenge, no protection could be observed. All animals developed an acute lethal course of ASF and had to be euthanized at a moderate humane endpoint within six days. Indeed, the vaccinated pigs showed even higher clinical scores and a higher inner body temperature than the control group. However, significantly lower viral loads were detectable in spleen and liver of immunized animals at the time point of euthanasia. This phenomenon suggests an immune mediated disease enhancement that needs further investigation.
Collapse
Affiliation(s)
- Jutta Pikalo
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Luca Porfiri
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), IAEA Laboratories, Seibersdorf, Austria
| | - Valerij Akimkin
- Chemical and Veterinary Investigations, Office Stuttgart, Fellbach, Germany
| | - Hanna Roszyk
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Katrin Pannhorst
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Richard Thiga Kangethe
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), IAEA Laboratories, Seibersdorf, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), IAEA Laboratories, Seibersdorf, Austria
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), IAEA Laboratories, Seibersdorf, Austria
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
5
|
Porfiri L, Burtscher J, Kangethe RT, Verhovsek D, Cattoli G, Domig KJ, Wijewardana V. Irradiated Non-replicative Lactic Acid Bacteria Preserve Metabolic Activity While Exhibiting Diverse Immune Modulation. Front Vet Sci 2022; 9:859124. [PMID: 35664846 PMCID: PMC9158532 DOI: 10.3389/fvets.2022.859124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
In the recent years, safety concerns regarding the administration of probiotics led to an increased interest in developing inactivated probiotics, also called “paraprobiotics”. Gamma irradiation represents a promising tool that can be used to produce safe paraprobiotics by inhibiting replication while preserving the structure, the metabolic activity, and the immunogenicity of bacteria. In this study, we evaluated the ability of four strains of lactic acid bacteria (LAB: Lacticaseibacillus casei, Lactobacillus acidophilus, Lactiplantibacillus plantarum, and Lacticaseibacillus paracasei) in preserving the metabolic activity and the immune modulation of swine porcine peripheral blood mononuclear cells, after gamma irradiation or heat inactivation. Our results show that all four strains retained the metabolic activity following gamma irradiation but not after heat inactivation. In terms of immune-modulatory capacity, irradiated L. acidophilus and Lc. paracasei were able to maintain an overall gene expression pattern similar to their live state, as heat inactivation did with Lc. casei. Moreover, we show that the two inactivation methods applied to the same strain can induce an opposed expression of key genes involved in pro-inflammatory response (e.g., IFNα and interleukin-6 for Lc. casei), whereas gamma irradiation of L. acidophilus and Lc. paracasei was able to induce a downregulation of the anti-inflammatory TGFβ. Taken together, our data show that immune modulation can be impacted not only by different inactivation methods but also by the strain of LAB selected. This study highlights that gamma irradiation harbors the potential to produce safe non-replicative metabolically active LAB and identifies immunomodulatory capacities that may be applied as vaccine adjuvants.
Collapse
Affiliation(s)
- Luca Porfiri
- Animal Production and Health Section, Joint Food and Agriculture Organization (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Johanna Burtscher
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard T. Kangethe
- Animal Production and Health Section, Joint Food and Agriculture Organization (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Doris Verhovsek
- VetFarm Medau, University of Veterinary Medicine Vienna, Berndorf, Austria
| | - Giovanni Cattoli
- Animal Production and Health Section, Joint Food and Agriculture Organization (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Konrad J. Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Section, Joint Food and Agriculture Organization (FAO)/International Atomic Energy Agency (IAEA) Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- *Correspondence: Viskam Wijewardana
| |
Collapse
|
6
|
Messina NL, Germano S, McElroy R, Rudraraju R, Bonnici R, Pittet LF, Neeland MR, Nicholson S, Subbarao K, Curtis N. Off-target effects of bacillus Calmette-Guérin vaccination on immune responses to SARS-CoV-2: implications for protection against severe COVID-19. Clin Transl Immunology 2022; 11:e1387. [PMID: 35573165 PMCID: PMC9028103 DOI: 10.1002/cti2.1387] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Background and objectives Because of its beneficial off‐target effects against non‐mycobacterial infectious diseases, bacillus Calmette–Guérin (BCG) vaccination might be an accessible early intervention to boost protection against novel pathogens. Multiple epidemiological studies and randomised controlled trials (RCTs) are investigating the protective effect of BCG against coronavirus disease 2019 (COVID‐19). Using samples from participants in a placebo‐controlled RCT aiming to determine whether BCG vaccination reduces the incidence and severity of COVID‐19, we investigated the immunomodulatory effects of BCG on in vitro immune responses to SARS‐CoV‐2. Methods This study used peripheral blood taken from participants in the multicentre RCT and BCG vaccination to reduce the impact of COVID‐19 on healthcare workers (BRACE trial). The whole blood taken from BRACE trial participants was stimulated with γ‐irradiated SARS‐CoV‐2‐infected or mock‐infected Vero cell supernatant. Cytokine responses were measured by multiplex cytokine analysis, and single‐cell immunophenotyping was made by flow cytometry. Results BCG vaccination, but not placebo vaccination, reduced SARS‐CoV‐2‐induced secretion of cytokines known to be associated with severe COVID‐19, including IL‐6, TNF‐α and IL‐10. In addition, BCG vaccination promoted an effector memory phenotype in both CD4+ and CD8+ T cells, and an activation of eosinophils in response to SARS‐CoV‐2. Conclusions The immunomodulatory signature of BCG’s off‐target effects on SARS‐CoV‐2 is consistent with a protective immune response against severe COVID‐19.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia.,Department of Paediatrics The University of Melbourne Parkville VIC Australia
| | - Susie Germano
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia
| | - Rebecca McElroy
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Rhian Bonnici
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia
| | - Laure F Pittet
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia.,Department of Paediatrics The University of Melbourne Parkville VIC Australia.,Paediatric Infectious Diseases Unit Faculty of Medicine Geneva University Hospitals Geneva Switzerland
| | - Melanie R Neeland
- Department of Paediatrics The University of Melbourne Parkville VIC Australia.,Molecular Immunity Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory The Royal Melbourne Hospital The Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Parkville VIC Australia.,WHO Collaborating Centre for Reference and Research on Influenza Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Nigel Curtis
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia.,Department of Paediatrics The University of Melbourne Parkville VIC Australia.,Infectious Diseases The Royal Children's Hospital Melbourne Parkville VIC Australia
| | | |
Collapse
|
7
|
Al-Hadyan K, Alsbeih G, Al-Harbi N, Judia SB, Al-Ghamdi M, Almousa A, Alsharif I, Bakheet R, Al-Romaih K, Al-Mozaini M, Al-Ghamdi S, Moftah B, Alhmaid R. Effect of gamma irradiation on filtering facepiece respirators and SARS-CoV-2 detection. Sci Rep 2021; 11:19888. [PMID: 34615977 PMCID: PMC8494839 DOI: 10.1038/s41598-021-99414-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022] Open
Abstract
To cope with the shortage of filtering facepiece respirators (FFRs) during the coronavirus (COVID-19) pandemic, healthcare institutions were forced to reuse FFRs after applying different decontamination methods including gamma-irradiation (GIR). The aim of this study was to evaluate the effect of GIR on the filtration efficiency (FE) of FFRs and on SARS-CoV-2 detection. The FE of 2 FFRs types (KN95 and N95-3 M masks) was assessed at different particle sizes (0.3-5 µm) following GIR (0-15 kGy) delivered at either typical (1.65 kGy/h) or low (0.5088 kGy/h) dose rates. The detection of two SARS-CoV-2 RNA genes (E and RdRp4) following GIR (0-50 kGy) was carried out using RT-qPCR assay. Both masks showed an overall significant (P < 0.001) reduction in FE with increased GIR doses. No significant differences were observed between GIR dose rates on FE. The GIR exhibited significant increases (P ≤ 0.001) in the cycle threshold values (ΔCt) of both genes, with no detection following high doses. In conclusion, complete degradation of SARS-CoV-2 RNA can be achieved by high GIR (≥ 30 kGy), suggesting its potential use in FFRs decontamination. However, GIR exhibited adverse effects on FE in dose- and particle size-dependent manners, rendering its use to decontaminate FFRs debatable.
Collapse
Affiliation(s)
- Khaled Al-Hadyan
- Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia.
| | - Ghazi Alsbeih
- Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia.
| | - Najla Al-Harbi
- Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| | - Sara Bin Judia
- Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| | - Maha Al-Ghamdi
- Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| | - Akram Almousa
- Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| | - Ibtihaj Alsharif
- Infection and Immunity Department, KFSH&RC, Riyadh, Saudi Arabia
| | - Razan Bakheet
- Translational Genomics Department, KFSH&RC, Riyadh, Saudi Arabia
| | | | - Maha Al-Mozaini
- Infection and Immunity Department, KFSH&RC, Riyadh, Saudi Arabia
| | - Salem Al-Ghamdi
- Infection Control and Hospital Epidemiology Department, KFSH&RC, Riyadh, Saudi Arabia
| | - Belal Moftah
- Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia
| | - Rashed Alhmaid
- General Corporate Consultancy Department, KFSH&RC, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Jin T, Xu Y, Dai C, Zhou X, Xu Q, Wu Z. Cold atmospheric plasma: A non-negligible strategy for viral RNA inactivation to prevent SARS-CoV-2 environmental transmission. AIP ADVANCES 2021; 11:085019. [PMID: 34413992 PMCID: PMC8371919 DOI: 10.1063/5.0060530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/02/2021] [Indexed: 05/13/2023]
Abstract
Cold atmospheric plasma (CAP), regarded as a powerful physics technology, displays antimicrobial, antitumor, and even antiviral properties, but the underlying mechanism is rarely studied. In this study, four CAP exposure doses (30, 60, 120, and 240 s) were applied to inactivate a severe acute respiratory syndrome coronavirus 2 like pseudovirus on a stainless steel disk, which comprised spike protein on its membrane and can express a green fluorescent protein. In order to unravel the potential effects of CAP irradiation on pseudovirus, infection assay, optical emission spectra analysis, transmission electron microscopy (TEM), sodium dodecyl sulfate polyacrylamide gel electrophoresis, ELISA, and qPCR experiments were carried out. As a result, our study indicated that CAP irradiation can significantly decrease the infectivity of pseudovirus in a dose dependent manner through destroying the cell membrane and further damaging viral RNA, with the molecular weight and conformation of spike receptor binding domain protein unchanged.
Collapse
Affiliation(s)
- Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Yong Xu
- Anhui Academy of Medical Sciences, Hefei, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Hefei, China
| | | | - Qinghua Xu
- Anhui Academy of Medical Sciences, Hefei, China
| | - Zhengwei Wu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
9
|
Falzone L, Gattuso G, Tsatsakis A, Spandidos DA, Libra M. Current and innovative methods for the diagnosis of COVID‑19 infection (Review). Int J Mol Med 2021; 47:100. [PMID: 33846767 PMCID: PMC8043662 DOI: 10.3892/ijmm.2021.4933] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID‑19) pandemic has forced the scientific community to rapidly develop highly reliable diagnostic methods in order to effectively and accurately diagnose this pathology, thus limiting the spread of infection. Although the structural and molecular characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) were initially unknown, various diagnostic strategies useful for making a correct diagnosis of COVID‑19 have been rapidly developed by private research laboratories and biomedical companies. At present, rapid antigen or antibody tests, immunoenzymatic serological tests and molecular tests based on RT‑PCR are the most widely used and validated techniques worldwide. Apart from these conventional methods, other techniques, including isothermal nucleic acid amplification techniques, clusters of regularly interspaced short palindromic repeats/Cas (CRISPR/Cas)‑based approaches or digital PCR methods are currently used in research contexts or are awaiting approval for diagnostic use by competent authorities. In order to provide guidance for the correct use of COVID‑19 diagnostic tests, the present review describes the diagnostic strategies available which may be used for the diagnosis of COVID‑19 infection in both clinical and research settings. In particular, the technical and instrumental characteristics of the diagnostic methods used are described herein. In addition, updated and detailed information about the type of sample, the modality and the timing of use of specific tests are also discussed.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute-IRCCS 'Fondazione G. Pascale', I-80131 Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
- Research Center for the Prevention, Diagnosis and Treatment of Tumors, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
10
|
Falzone L, Gattuso G, Tsatsakis A, Spandidos DA, Libra M. Current and innovative methods for the diagnosis of COVID‑19 infection (Review). Int J Mol Med 2021. [PMID: 33846767 DOI: 10.3892/ijmm.2021.4933/html] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID‑19) pandemic has forced the scientific community to rapidly develop highly reliable diagnostic methods in order to effectively and accurately diagnose this pathology, thus limiting the spread of infection. Although the structural and molecular characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) were initially unknown, various diagnostic strategies useful for making a correct diagnosis of COVID‑19 have been rapidly developed by private research laboratories and biomedical companies. At present, rapid antigen or antibody tests, immunoenzymatic serological tests and molecular tests based on RT‑PCR are the most widely used and validated techniques worldwide. Apart from these conventional methods, other techniques, including isothermal nucleic acid amplification techniques, clusters of regularly interspaced short palindromic repeats/Cas (CRISPR/Cas)‑based approaches or digital PCR methods are currently used in research contexts or are awaiting approval for diagnostic use by competent authorities. In order to provide guidance for the correct use of COVID‑19 diagnostic tests, the present review describes the diagnostic strategies available which may be used for the diagnosis of COVID‑19 infection in both clinical and research settings. In particular, the technical and instrumental characteristics of the diagnostic methods used are described herein. In addition, updated and detailed information about the type of sample, the modality and the timing of use of specific tests are also discussed.
Collapse
Affiliation(s)
- Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute‑IRCCS 'Fondazione G. Pascale', I‑80131 Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|