1
|
Bharathan A, Arafath Y, Fathima A, Hassan S, Singh P, Kiran GS, Selvin J. Implication of environmental factors on the pathogenicity of Vibrio vulnificus: Insights into gene activation and disease outbreak. Microb Pathog 2025; 204:107591. [PMID: 40246153 DOI: 10.1016/j.micpath.2025.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/18/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Climate change, particularly rising sea surface temperatures and altered salinity levels has contributed to the increased prevalence of Vibrio vulnificus infections in humans and marine life. This opportunistic pathogen thrives in warm, estuarine environments, and its virulence is influenced by temperature-dependent gene expression, such as the activation of pVvBt2. Elevated temperatures and iron availability enhance pathogenicity by upregulating key virulence factors, including hemolysin, exotoxins, and biofilm-associated genes. Climate-driven shifts in microbial ecology have also facilitated the global expansion of V. vulnificus, leading to more frequent outbreaks and an increasing threat to public health. The unregulated use of antibiotics has also contributed to the emergence of resistant strains, complicating treatment strategies. This review explores the complex interplay between climate change and the molecular mechanisms driving V. vulnificus pathogenicity, global gene expression responses, and the implications for disease outbreaks. We also discuss current and emerging therapeutic approaches, including antibiotic stewardship and vaccine development, to mitigate the rising health risks posed by this climate-sensitive pathogen.
Collapse
Affiliation(s)
- Aswathi Bharathan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Yaser Arafath
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Aifa Fathima
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - George Seghal Kiran
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
2
|
Ruben MO, Akinsanola AB, Okon ME, Shitu T, Jagunna II. Emerging challenges in aquaculture: Current perspectives and human health implications. Vet World 2025; 18:15-28. [PMID: 40041520 PMCID: PMC11873385 DOI: 10.14202/vetworld.2025.15-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/04/2024] [Indexed: 03/06/2025] Open
Abstract
Aquaculture, the cultivation of aquatic organisms for human consumption, has become an essential contributor to global food security. However, it faces numerous challenges that threaten its sustainability and capacity to meet the growing demand for animal protein. This review investigates these challenges, with a particular focus on environmental degradation, public health risks, and ethical dilemmas posed by genetic interventions in fish breeding. Despite the promise of genetically modified organisms (GMOs) in enhancing fish production, their integration into aquaculture remains controversial due to potential risks and unresolved ethical questions. This study aims to provide a comprehensive understanding of these pressing issues and propose pathways for sustainable aquaculture development. With the global population increasing and the demand for animal protein intensifying, aquaculture holds great potential as a sustainable food source. However, its contribution to global protein demand remains minimal, projected to decline to as low as 4% in the coming decades. Furthermore, aquaculture's environmental impact, including pollution of water bodies and ecosystem disruption, poses serious threats to biodiversity and public health. Addressing these challenges is critical for ensuring the long-term viability of aquaculture. By exploring the intersection of sustainability, ethics, and innovation, this review provides valuable insights for policymakers, industry stakeholders, and researchers seeking to advance sustainable aquaculture practices. This study aims to evaluate the current state of aquaculture and identify key challenges related to environmental sustainability, public health, and ethical considerations. It seeks to explore the potential of sustainable practices and genetic interventions to address these challenges while balancing the need for increased production and societal acceptance. The ultimate goal is to offer practical recommendations for fostering a resilient and ethical aquaculture industry capable of meeting future global food demands.
Collapse
Affiliation(s)
- M. Oghenebrorhie Ruben
- Landmark University SDG 2 (Zero Hunger), Landmark University, Omu-Aran, Nigeria
- Department of Animal Science, Landmark University, Omu-Aran, Nigeria
| | | | - M. Ekemini Okon
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Teslim Shitu
- Department of Microbiology, University of Ilorin, Kwara State, Nigeria
| | | |
Collapse
|
3
|
Ndraha N, Lin HY, Hsiao HI, Lin HJ. Managing the microbiological safety of tilapia from farm to consumer. Compr Rev Food Sci Food Saf 2024; 23:e70023. [PMID: 39289805 DOI: 10.1111/1541-4337.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Tilapia stands out as one of the most extensively farmed and consumed fish species globally, valued for its ease of preparation and relative affordability. Although tilapia is a valuable protein source, it can also function as a vector for foodborne pathogens. This literature review reveals that tilapia could carry a variety of contamination with various foodborne pathogens, including Plesiomonas shigelloides, diarrheagenic Escherichia coli, Vibrio parahaemolyticus, Salmonella Weltevreden, Salmonella enterica, Shigella, Staphylococcus aureus, Campylobacter jejuni, Clostridium botulinum, and Listeria monocytogenes. Although guidelines from entities, such as the Global Seafood Alliance, Aquaculture Stewardship Council, and International Organization for Standardization, have been established to ensure the microbiological safety of tilapia, the unique challenges posed by pathogens in tilapia farming call for a more nuanced and targeted approach. Recognizing that contaminants could emerge at various stages of the tilapia supply chain, there is a crucial need for enhanced detection and monitoring of pathogens associated with this fish and its culturing environment. Additionally, it is essential to acknowledge the potential impact of climate change on the safety of tilapia, which may elevate the prevalence and contamination levels of pathogens in this fish. Proactive measures are essential to understand and mitigate the effects of climate change on tilapia production, ensuring the sustainability and safety of this seafood product for both present and future generations.
Collapse
Affiliation(s)
- Nodali Ndraha
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta, Indonesia
| | - Hung-Yun Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City, Taiwan (R.O.C.)
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan (R.O.C.)
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City, Taiwan (R.O.C.)
| |
Collapse
|
4
|
Erasmus JH, Truter M, Smit NJ, Nachev M, Sures B, Wepener V. Element contamination of the Orange-Vaal River basin, South Africa: a One Health approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29886-29901. [PMID: 38589590 PMCID: PMC11058963 DOI: 10.1007/s11356-024-32932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Numerous low-income groups and rural communities depend on fish as an inexpensive protein source worldwide, especially in developing countries. These communities are constantly exposed to various pollutants when they frequently consume polluted fish. The largest river basin in South Africa is the Orange-Vaal River basin, and several anthropogenic impacts, especially gold mining activities and industrial and urban effluents, affect this basin. The Department of Environment, Forestry and Fisheries in South Africa has approved the much-anticipated National Freshwater (Inland) Wild Capture Fisheries Policy in 2021. The aims of this study were (1) to analyze element concentrations in the widely distributed Clarias gariepinus from six sites from the Orange-Vaal River basin and (2) to determine the carcinogenic and non-carcinogenic human health risks associated with fish consumption. The bioaccumulation of eight potentially toxic elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) was assessed in C. gariepinus from sites with different anthropogenic sources. The human health risks were determined to assess the potential risks posed by consuming contaminated C. gariepinus from these sites. Carcinogenic health risks were associated with fish consumption, where it ranged between 21 and 75 out of 10,000 people having the probability to develop cancer from As exposure. The cancer risk between the sites ranged between 1 and 7 out of 10,000 people to developing cancer from Cr exposure. A high probability of adverse non-carcinogenic health risks is expected if the hazard quotient (HQ) is higher than one. The HQ in C. gariepinus from the six sites ranged between 1.5 and 5.6 for As, while for Hg, it was between 1.8 and 5.1. These results highlight the need for monitoring programs of toxic pollutants in major river systems and impoundments in South Africa, especially with the new fisheries policy, as there are possible human health risks associated with the consumption of contaminated fish.
Collapse
Affiliation(s)
- Johannes Hendrik Erasmus
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| | - Marliese Truter
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
- South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda, South Africa
| | - Nico Jacobus Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
- South African Institute for Aquatic Biodiversity (NRF-SAIAB), Makhanda, South Africa
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, 45141, Essen, Germany
| | - Bernd Sures
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, 45141, Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
5
|
Yu MH, Li XS, Wang J, Longshaw M, Song K, Wang L, Zhang CX, Lu KL. Substituting fish meal with a bacteria protein (Methylococcus capsulatus, Bath) grown on natural gas: Effects on growth non-specific immunity and gut health of spotted seabass (Lateolabrax maculatus). Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Risk assessment of heavy metal exposure via consumption of fish and fish products from the retail market in Bosnia and Herzegovina. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|