1
|
Matarrese P, Puglisi R, Mattia G, Samela T, Abeni D, Malorni W. An Overview of the Biological Complexity of Vitiligo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:3193670. [PMID: 39735711 PMCID: PMC11671640 DOI: 10.1155/omcl/3193670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 12/31/2024]
Abstract
Vitiligo is a skin disease that affects all ethnicities and genders and is characterized by the loss of pigment essentially due to the selective loss of melanocytes. Although it is generally considered a systemic disease associated with polymorphisms in genes involved in the immune response, vitiligo is also considered an oxidative imbalance-associated disease. It represents a multifactorial pathology in which some genetic predisposition and epigenetic factors coupled with some critical biochemical and molecular pathways could play a pivotal role. The aim of this work was thus to review some of the fine cellular mechanisms involved in the etiopathogenesis of vitiligo, mainly focusing on the nonimmunological ones, extensively highlighted elsewhere. We took into consideration, in addition to oxidative stress, both the cause and the hallmark of the pathology, some less investigated aspects such as the role of epigenetic factors, e.g., microRNAs, of receptors of catecholamines, and the more recently recognized role of the mitochondria. Sex differences associated with vitiligo have also been investigated starting from sex hormones and the receptors through which they exert their influence. From literature analysis, a picture seems to emerge in which vitiligo can be considered not just a melanocyte-affecting disease but a systemic pathology that compromises the homeostasis of a complex tissue such as the skin, in which different cell types reside playing multifaceted physiological roles for the entire organism. The exact sequence of cellular and subcellular events associated with vitiligo is still a matter of debate. However, the knowledge of the individual biological factors implicated in vitiligo could help physicians to highlight useful innovative markers of progression and provide, in the long run, new targets for more tailored treatments based on individual manifestations of the disease.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Rossella Puglisi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Gianfranco Mattia
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Tonia Samela
- Clinical Psychology Unit, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Damiano Abeni
- Clinical Epidemiology Unit, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore (UCSC), Rome, Italy
| |
Collapse
|
2
|
Benzekri L, Cario-André M, Laamrani FZ, Gauthier Y. Segmental vitiligo distribution follows the underlying arterial blood supply territory: a hypothesis based on anatomo-clinical, pathological and physio-pathological studies. Front Med (Lausanne) 2024; 11:1424887. [PMID: 39359912 PMCID: PMC11445008 DOI: 10.3389/fmed.2024.1424887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Background Segmental vitiligo (SV) is a subset of vitiligo typically characterized by its unilateral distribution. The pathogenesis of SV remains unclear, and until now the two main patterns proposed for SV have lacked biological support. This calls for a new approach. Objectives Use data obtained from anatomo-clinical, pathological, and physio-pathological studies to formulate a new hypothesis on segmental vitiligo distribution and its pathogenesis. Methods Using transparent templates of local arterial blood supply, we evaluated anatomical correspondence (AC) in 140 SV lesions according to the number of SV lesions that fit within the corresponding arterial blood-supply areas. SV lesions were graded as 1 (moderate: AC < 50%), 2 (good: AC > 50%), or 3 (excellent: AC of all lesions). To support this anatomical investigation, we searched for complementary assessments according to the activity of SV lesions. Arterial and periarterial network impairment and inflammatory infiltration were histologically studied using nerve growth factor (NGF) and CD4 and CD8 monoclonal antibodies. Increased blood flow of the underlying arteries was also investigated using thermography and ultrasonography. Results We recruited 140 patients with a sex ratio of 0.8 and mean age 26.13 years. Localizations: head and neck 84.28%; trunk 6.42%; upper limb 5%; genital areas 2.14%; lower limb 1.42%. The AC of each SV lesion with the underlying artery blood supply territory was rated as 72% excellent; 16% good; and 12% moderate. Histologically (40 patients), we found some periarterial network impairments. Thermal asymmetry was significantly associated with active SV (p < 0.001). Conclusion We hypothesized that SV distribution corresponds to the underlying artery blood-supply territory.
Collapse
Affiliation(s)
- Laila Benzekri
- Dermatology Department, Pigmentary Disorders Outpatient Clinic, Ibn Sina Teaching Hospital, Mohammed V University in Rabat, Rabat, Morocco
| | - Muriel Cario-André
- Bordeaux University, INSERM, BRIC, Bordeaux, France
- National Reference Center for Rare Skin Diseases, Bordeaux University Hospital, Bordeaux, France
| | - Fatima Zahrae Laamrani
- Radiology Department, Ibn Sina Teaching Hospital, Mohammed V University in Rabat, Rabat, Morocco
| | - Yvon Gauthier
- Vitiligo and Melasma Research Association, Bordeaux, France
| |
Collapse
|
3
|
Mei K, Zhang F, Zhang J, Ming H, Jiang Y, Huang S. Perceived social support mitigates the associations among household chaos and health and well-being in rural early adolescents. J Adolesc 2024; 96:112-123. [PMID: 37796059 DOI: 10.1002/jad.12260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE Previous studies have demonstrated that early adolescents residing in chaotic households experience adverse health and well-being outcomes. However, the potential protective factors that mitigate the relationship between household chaos and early adolescents' health and well-being remain unknown. Accordingly, this study aims to investigate whether perceived social support moderates the link between household chaos and the health and well-being among Chinese rural early adolescents. METHODS Physical health difficulties were assessed using two measures: general health and allostatic load (AL). Mental health difficulties were measured by depression. Well-being was reflected by life satisfaction. Specifically, this study included early adolescents (N = 337; Mage = 10.88 ± 1.36 years) from rural counties in China who reported their household chaos, perceived social support, general health, depression, and life satisfaction. AL scores were determined based on six physiological indices. RESULTS Household chaos exhibited a negative relationship with the general health and life satisfaction while a positive correlation with depression. Moreover, perceived social support was found to moderate the association between household chaos and these health and well-being indicators of early adolescents. Specifically, early adolescents who reported higher levels of perceived social support exhibited weaker negative connections among household chaos and their general health, depression, and life satisfaction. Furthermore, no significant relationships were observed between the adolescents' AL and household chaos, perceived social support, or their interactions. CONCLUSIONS Household chaos poses a significant risk to health and well-being. Furthermore, the findings indicate that perceived social support can mitigate these negative effects.
Collapse
Affiliation(s)
- Kehan Mei
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Feng Zhang
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Jiatian Zhang
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Hua Ming
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Ying Jiang
- School of Psychology, Guizhou Normal University, Guizhou, China
| | - Silin Huang
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Alshaikh AA, Bharti RK. Spontaneous Reversal of Vitiligo, a Rare Phenomenon Reported in a Case in Saudi Arabia with an Insight into Metabolic Biochemical Derangements. Medicina (B Aires) 2023; 59:medicina59030427. [PMID: 36984427 PMCID: PMC10053937 DOI: 10.3390/medicina59030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Background and Objectives: Vitiligo is a skin disorder characterized by hypopigmented macules occurring due to melanocyte destruction. An interplay of several biochemical mechanisms has been proposed to explain the etiopathogenesis of vitiligo, such as genetic, autoimmune responses, generation of inflammatory mediators, oxidative stress, and melanocyte detachment mechanisms. There is no cure for vitiligo; however, pharmacological treatment measures (cosmetic camouflage creams, steroids, psoralen and ultraviolet A (PUVA) therapy, narrowband UVB) are available, but they could have certain side effects. We reported an interesting case of vitiligo in Saudi Arabia that showed reversal of vitiligo, which is an extremely rare phenomenon, with the objective of probing the probable reasons for this reversal. To the best of our knowledge, there is no study on vitiligo that has reported spontaneous reversal of vitiligo in Saudi Arabia so far. Materials and Method: The patient presented to the Family Medicine clinic with a history of restoration of melanin pigment in his lesions after 3 years of the onset of vitiligo. Patients history was taken carefully along with clinical examination, carried out necessary biomedical lab investigations and compiled the data. The data at the time of pigment restoration were compared to the previous data when he developed the lesions. Result: The probable reasons for vitiligo reversal could be markedly decreased psychological stress, regular consumption of an antioxidant-rich herbal drink made of curcumin and honey, and dietary switchover to vegetarianism and an alcohol-free lifestyle. Conclusions: Curcumin-based herbal remedies could be an alternative option to treat vitiligo. These methods must be further explored through clinical trials as they are safer, easily available, and more affordable.
Collapse
|
5
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
6
|
Circulating Exosomal miR-493-3p Affects Melanocyte Survival and Function by Regulating Epidermal Dopamine Concentration in Segmental Vitiligo. J Invest Dermatol 2022; 142:3262-3273.e11. [PMID: 35690140 DOI: 10.1016/j.jid.2022.05.1086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023]
Abstract
Circulating exosomal microRNAs have been used as potential biomarkers for various disorders. However, to date, the microRNA expression profile of circulating exosomes in patients with segmental vitiligo (SV) has not been identified. Thus, we aimed to identify the expression profile of circulating exosomal microRNAs and investigate their role in the pathogenesis of SV. Our study identified the expression profile of circulating exosomal microRNAs in SV and selected miR-493-3p as a candidate biomarker whose expression is significantly increased in circulating exosomes and perilesions in patients with SV. Circulating exosomes were internalized by human primary keratinocytes and increased dopamine secretion in vitro. Furthermore, miR-493-3p overexpression in keratinocytes increased dopamine concentration in the culture supernatant, which led to a significant increase in ROS and melanocyte apoptosis as well as a decrease in melanocyte proliferation and melanin synthesis in the coculture system by targeting HNRNPU. We also confirmed that HNRNPU could bind to and regulate COMT, a major degradative enzyme of dopamine. Hence, circulating exosomal miR-493-3p is a biomarker for SV, and the miR-493-3p/HNRNPU/COMT/dopamine axis may contribute to melanocyte dysregulation in the pathogenesis of SV.
Collapse
|
7
|
Enkhtaivan E, Lee CH. Role of Amine Neurotransmitters and Their Receptors in Skin Pigmentation: Therapeutic Implication. Int J Mol Sci 2021; 22:ijms22158071. [PMID: 34360837 PMCID: PMC8348573 DOI: 10.3390/ijms22158071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022] Open
Abstract
Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.
Collapse
|
8
|
Abstract
Vitiligo is a disease of the skin characterized by the appearance of white spots. Significant progress has been made in understanding vitiligo pathogenesis over the past 30 years, but only through perseverance, collaboration, and open-minded discussion. Early hypotheses considered roles for innervation, microvascular anomalies, oxidative stress, defects in melanocyte adhesion, autoimmunity, somatic mosaicism, and genetics. Because theories about pathogenesis drive experimental design, focus, and even therapeutic approach, it is important to consider their impact on our current understanding about vitiligo. Animal models allow researchers to perform mechanistic studies, and the development of improved patient sample collection methods provides a platform for translational studies in vitiligo that can also be applied to understand other autoimmune diseases that are more difficult to study in human samples. Here we discuss the history of vitiligo translational research, recent advances, and their implications for new treatment approaches.
Collapse
Affiliation(s)
| | - John E. Harris
- Department of Medicine, Division of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
9
|
Lu D, Fan M, Cai R, Huang Z, You R, Huang L, Feng S, Lu Y. Silver nanocube coupling with a nanoporous silver film for dual-molecule recognition based ultrasensitive SERS detection of dopamine. Analyst 2021; 145:3009-3016. [PMID: 32129782 DOI: 10.1039/d0an00177e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dopamine (DA) is one of the catecholamine neurotransmitters used for the treatment of neural disorders. In this study, a novel sensor based on surface-enhanced Raman scattering (SERS) with dual molecule-recognition for ultrasensitive detection of DA was presented, with a limit of detection (LOD) of 40 fM, without any pretreatment of clinical samples. To realize the sensitive and selective detection of DA in complex samples, the nanoporous silver film (AgNF) surfaces were functionalized with mercaptopropionic acid (MPA) to accurately capture DA, while silver nanocubes (AgNCs) were modified with 4-mercaptobenzene boronic acid (4-MPBA) as a Raman reporter for the quantitative detection of DA. The nanogaps between AgNCs and the AgNF led to the generation of an abundance of hot spots for the SERS signal and thus effectively improved the sensitivity of DA detection. Measurements of DA concentrations in clinical body fluids such as human serum and urine samples are also demonstrated, showing excellent performance for DA detection in a complex environment. Our results demonstrate the promising potential for the ultrasensitive detection of DA for the potential diagnosis of DA-related diseases.
Collapse
Affiliation(s)
- Dechan Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350117, China.
| | - Min Fan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350117, China.
| | - Rongyuan Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350117, China.
| | - Zufang Huang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350117, China.
| | - Luqiang Huang
- College of Life Sciences, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Shangyuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350117, China.
| |
Collapse
|
10
|
Li L. The Role of MicroRNAs in Vitiligo: Regulators and Therapeutic Targets. Ann Dermatol 2020; 32:441-451. [PMID: 33911786 PMCID: PMC7875238 DOI: 10.5021/ad.2020.32.6.441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/06/2023] Open
Abstract
Vitiligo is an acquired skin disorder clinically characterized by the progressive appearance of white maculae due to a loss of functioning epidermal melanocytes. Studies have shown that microRNAs (miRNAs) modulate cellular differentiation, proliferation and apoptosis, including immune cell and melanocyte development and functions. The role of miRNAs in the pathogenesis of several immune-related diseases has been explored. Novel approaches to target miRNAs have recently emerged allowing modulation of miRNAs levels in diverse pathological processes, thus making them promising targets for molecular-based diagnostics and therapy. Here, we report the present status of research on miRNAs expression and functional alterations in vitiligo, in order to more fully understand the role of these molecules in vitiligo pathology.
Collapse
Affiliation(s)
- Lili Li
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
11
|
Abstract
Urinary metabolomics is a useful non-invasive tool for large-scale screening of disease-related metabolites. However, no comprehensive urinary metabolomic analysis of vitiligo is presently available. To investigate the urine metabolic pattern of vitiligo patients, we conducted a combined cross-sectional and prospective self-control cohort study and an untargeted urinary metabolomic analysis. In the cross-sectional study, 295 vitiligo patients and 192 age‐ and sex‐matched controls were enrolled, and 71 differential metabolites between two groups were identified. Pathway enrichment analysis revealed that drug metabolism-cytochrome P450, biopterin metabolism, vitamin B9 (folate) metabolism, selenoamino acid metabolism, and methionine and cysteine metabolism showed significant enrichment in vitiligo patients compared with the status in healthy controls. In the self-control cohort, 46 active vitiligo patients were recruited to analyse the urinary metabolic signatures after treatment. All of these patients were asked to undertake follow-up visits every 2 months three times after first consulting and the disease stage was evaluated compared with that at the last visit. Folate metabolism, linoleate metabolism, leukotriene metabolism, alkaloid biosynthesis, and tyrosine metabolism were predicted to be involved in vitiligo activity. Our study is the first attempt to reveal urinary metabolic signatures of vitiligo patients and provides new insights into the metabolic mechanisms of vitiligo.
Collapse
|
12
|
Plenis A, Olędzka I, Kowalski P, Miękus N, Bączek T. Recent Trends in the Quantification of Biogenic Amines in Biofluids as Biomarkers of Various Disorders: A Review. J Clin Med 2019; 8:E640. [PMID: 31075927 PMCID: PMC6572256 DOI: 10.3390/jcm8050640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023] Open
Abstract
Biogenic amines (BAs) are bioactive endogenous compounds which play a significant physiological role in many cell processes like cell proliferation and differentiation, signal transduction and membrane stability. Likewise, they are important in the regulation of body temperature, the increase/decrease of blood pressure or intake of nutrition, as well as in the synthesis of nucleic acids and proteins, hormones and alkaloids. Additionally, it was confirmed that these compounds can be considered as useful biomarkers for the diagnosis, therapy and prognosis of several neuroendocrine and cardiovascular disorders, including neuroendocrine tumours (NET), schizophrenia and Parkinson's Disease. Due to the fact that BAs are chemically unstable, light-sensitive and possess a high tendency for spontaneous oxidation and decomposition at high pH values, their determination is a real challenge. Moreover, their concentrations in biological matrices are extremely low. These issues make the measurement of BA levels in biological matrices problematic and the application of reliable bioanalytical methods for the extraction and determination of these molecules is needed. This article presents an overview of the most recent trends in the quantification of BAs in human samples with a special focus on liquid chromatography (LC), gas chromatography (GC) and capillary electrophoresis (CE) techniques. Thus, new approaches and technical possibilities applied in these methodologies for the assessment of BA profiles in human samples and the priorities for future research are reported and critically discussed. Moreover, the most important applications of LC, GC and CE in pharmacology, psychology, oncology and clinical endocrinology in the area of the analysis of BAs for the diagnosis, follow-up and monitoring of the therapy of various health disorders are presented and critically evaluated.
Collapse
Affiliation(s)
- Alina Plenis
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Ilona Olędzka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Piotr Kowalski
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Natalia Miękus
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|