1
|
Vyzhigina EV, Kovalyov AM, Kokorev DA, Borodulina EA, Ismatullin DD, Lyamin AV. Comparative Analysis of the Mass Spectra of Mycobacterium abscessus Complex Strains Isolated on Various Nutrient Media. Int J Mycobacteriol 2024; 13:252-257. [PMID: 39277886 DOI: 10.4103/ijmy.ijmy_135_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Mycobacterium abscessus complex (MABSc) causes chronic infection in patients with concomitant structural changes in the respiratory tract, which is especially important for patients with cystic fibrosis. To isolate an MABSc culture from clinical material, a variety of nutrient media are used. For species determination of microorganisms isolated on these media, additional identification methods are used, for example, polymerase chain reaction, sequencing, or mass spectrometry. The latter method is relatively easy to implement but requires improvement, due to the identification inaccuracy of nontuberculosis mycobacterias in general. Consequently, a set of nutrient media may be important for subsequent identification by mass spectrometry. METHODS The study was conducted on 64 strains of MABSc representatives: 56 strains were obtained from patients with cystic fibrosis and 8 strains from patients with pulmonary pathology unrelated to cystic fibrosis. The obtained MABSc strains were transplanted to the universal chromogenic medium and the selective medium for the Burkholderia cepacia complex (BCC) isolation. Species identification was carried out by mass spectrometry based on matrix-activated laser time-of-flight desorption/ionization (MALDI-ToF MS). Microbial identification is based on a comparison of the obtained mass spectra with reference spectra from the database. Microorganisms were identified based on the coincidence degree (Score value). Sample preparation for microbial identification by mass spectrometry was carried out by an extended direct application method. Fragments of the rpoB and hsp65 genes with lengths of 752 bp and 441 bp, respectively, were used as molecular markers for subspecific identification of MABSc strains. RESULTS A comparison of the peaks obtained after mass spectrometry of MABSc strains isolated on the studied nutrient media showed significant differences between these indicators selective medium for the BCC isolation with the supplement of iron polymaltose hydroxide (III) and universal chromogenic medium (P < 0.001) and selective medium for the BCC isolation with universal chromogenic medium (P < 0.001). Twenty-five strains of MABSc representatives were sequenced: results of subspecies determination in strains isolated on the universal chromogenic medium coincided with the results sequencing in 13 (86.6%) strains out of 15. CONCLUSION MALDI-ToF mass spectrometry allows microbial identification in a short time and with minimal cost, but it does not yet allow the proper identification of the subspecies of certain microbial groups, such as MABSc. Cultivation methods need optimization and new approaches to the extraction process of the bacterial protein fraction.
Collapse
Affiliation(s)
| | - Alexander Mikhailovich Kovalyov
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| | - Daniil Andreevich Kokorev
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| | | | - Danir Damirovich Ismatullin
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| | - Artem Viktorovich Lyamin
- Professional Center for Education and Research in Genetic and Laboratory Technologies, Samara State Medical University, Samara, Russia
| |
Collapse
|
2
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,CONTACT Michael U. Shiloh
| |
Collapse
|
3
|
Khare R, Brown-Elliott BA. Culture, Identification, and Antimicrobial Susceptibility Testing of Pulmonary Nontuberculous Mycobacteria. Clin Chest Med 2023; 44:743-755. [PMID: 37890913 DOI: 10.1016/j.ccm.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Nontuberculous mycobacteria (NTM) typically cause opportunistic pulmonary infections and reliable laboratory results can assist with diagnosis of disease. Microscopy can detect acid-fast bacilli from specimens though it has poor sensitivity. Solid and liquid culture are used to grow NTM, which are identified by molecular or protein-based assays. Because culture has a long turnaround time, some assays are designed to identify NTM directly from sputum specimens. When indicated, phenotypic susceptibility testing should be performed by broth microdilution as per the guidelines from the Clinical Laboratory Standards Institute. Genotypic susceptibility methods may be used to decrease the turnaround time for some antimicrobials.
Collapse
Affiliation(s)
- Reeti Khare
- Mycobacteriology Laboratory, 1400 Jackson Street, National Jewish Health, Denver, CO 80238, USA.
| | - Barbara A Brown-Elliott
- The University of TX Health Science Center at Tyler, Mycobacteria/Nocardia Laboratory, 11937 US Highway 271, Tyler, TX 75708, USA
| |
Collapse
|
4
|
Akwani WC, van Vliet AH, Joel JO, Andres S, Diricks M, Maurer FP, Chambers MA, Hingley-Wilson SM. The Use of Comparative Genomic Analysis for the Development of Subspecies-Specific PCR Assays for Mycobacterium abscessus. Front Cell Infect Microbiol 2022; 12:816615. [PMID: 35419298 PMCID: PMC8995789 DOI: 10.3389/fcimb.2022.816615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium abscessus complex (MABC) is an important pathogen of immunocompromised patients. Accurate and rapid determination of MABC at the subspecies level is vital for optimal antibiotic therapy. Here we have used comparative genomics to design MABC subspecies-specific PCR assays. Analysis of single nucleotide polymorphisms and core genome multilocus sequence typing showed clustering of genomes into three distinct clusters representing the MABC subspecies M. abscessus, M. bolletii and M. massiliense. Pangenome analysis of 318 MABC genomes from the three subspecies allowed for the identification of 15 MABC subspecies-specific genes. In silico testing of primer sets against 1,663 publicly available MABC genomes and 66 other closely related Mycobacterium genomes showed that all assays had >97% sensitivity and >98% specificity. Subsequent experimental validation of two subspecies-specific genes each showed the PCR assays worked well in individual and multiplex format with no false-positivity with 5 other mycobacteria of clinical importance. In conclusion, we have developed a rapid, accurate, multiplex PCR-assay for discriminating MABC subspecies that could improve their detection, diagnosis and inform correct treatment choice.
Collapse
Affiliation(s)
- Winifred C. Akwani
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Arnoud H.M. van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jordan O. Joel
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Sönke Andres
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Margo Diricks
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Florian P. Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark A. Chambers
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Suzanne M. Hingley-Wilson
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
5
|
Minimum-inhibitory-concentration of iclaprim and lefamulin against Mycobacterium abscessus complex. Antimicrob Agents Chemother 2021; 65:e0061921. [PMID: 34252305 DOI: 10.1128/aac.00619-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with rapid-growing-mycobacteria (RGM) are often difficult to treat.….
Collapse
|
6
|
Whole-Genome Sequencing Analysis to Identify Infection with Multiple Species of Nontuberculous Mycobacteria. Pathogens 2021; 10:pathogens10070879. [PMID: 34358029 PMCID: PMC8308675 DOI: 10.3390/pathogens10070879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Mixed infection with multiple species of nontuberculous mycobacteria (NTM) is difficult to identify and to treat. Current conventional molecular-based methods for identifying mixed infections are limited due to low specificity. Here, we evaluated the utility of whole-genome sequencing (WGS) analysis to detect and identify mixed NTM infections. Analytical tools used included PubMLST, MetaPhlAn3, Kraken2, Mykrobe-Predictor and analysis of heterozygous SNP frequencies. The ability of each to identify mixed infections of NTM species was compared. Sensitivity was tested using 101 samples (sequence sets) including 100 in-silico simulated mixed samples with various proportions of known NTM species and one sample of known mixed NTM species from a public database. Single-species NTM control samples (155 WGS samples from public databases and 15 samples from simulated reads) were tested for specificity. Kraken2 exhibited 100% sensitivity and 98.23% specificity for detection and identification of mixed NTM species with accurate estimation of relative abundance of each species in the mixture. PubMLST (99% and 96.47%) and MetaPhlAn3 (95.04% and 83.52%) had slightly lower sensitivity and specificity. Mykrobe-Predictor had the lowest sensitivity (57.42%). Analysis of read frequencies supporting single nucleotide polymorphisms (SNPs) could not detect mixed NTM samples. Clinical NTM samples (n = 16), suspected on the basis of a 16S-23S rRNA gene sequence-based line-probe assay (LPA) to contain more than one NTM species, were investigated using WGS-analysis tools. This identified only a small proportion (37.5%, 6/16 samples) of the samples as mixed infections and exhibited only partial agreement with LPA results. LPAs seem to be inadequate for detecting mixed NTM species infection. This study demonstrated that WGS-analysis tools can be used for diagnosis of mixed infections with different species of NTM.
Collapse
|
7
|
A novel DNA chromatography method to discriminate Mycobacterium abscessus subspecies and macrolide susceptibility. EBioMedicine 2021; 64:103187. [PMID: 33446475 PMCID: PMC7910664 DOI: 10.1016/j.ebiom.2020.103187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022] Open
Abstract
Background The clinical impact of infection with Mycobacterium (M.) abscessus complex (MABC), a group of emerging non-tuberculosis mycobacteria (NTM), is increasing. M. abscessus subsp. abscessus/bolletii frequently shows natural resistance to macrolide antibiotics, whereas M. abscessus subsp. massiliense is generally susceptible. Therefore, rapid and accurate discrimination of macrolide-susceptible MABC subgroups is required for effective clinical decisions about macrolide treatments for MABC infection. We aimed to develop a simple and rapid diagnostic that can identify MABC isolates showing macrolide susceptibility. Methods Whole genome sequencing (WGS) was performed for 148 clinical or environmental MABC isolates from Japan to identify genetic markers that can discriminate three MABC subspecies and the macrolide-susceptible erm(41) T28C sequevar. Using the identified genetic markers, we established PCR based- or DNA chromatography-based assays. Validation testing was performed using MABC isolates from Taiwan. Finding We identified unique sequence regions that could be used to differentiate the three subspecies. Our WGS-based phylogenetic analysis indicated that M. abscessus carrying the macrolide-susceptible erm(41) T28C sequevar were tightly clustered, and identified 11 genes that were significantly associated with the lineage for use as genetic markers. To detect these genetic markers and the erm(41) locus, we developed a DNA chromatography method that identified three subspecies, the erm(41) T28C sequevar and intact erm(41) for MABC in a single assay within one hour. The agreement rate between the DNA chromatography-based and WGS-based identification was 99·7%. Interpretation We developed a novel, rapid and simple DNA chromatography method for identification of MABC macrolide susceptibility with high accuracy. Funding AMED, JSPS KAKENHI
Collapse
|
8
|
Investigation of Two Mycobacterium abscessus Outbreaks in Quebec Using Whole Genome Sequencing. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/7092053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In recent decades, nontuberculous mycobacteria (NTM) infections are of emerging public health concern and have contributed towards significant clinical and economic burden globally. One such rapid growing mycobacteria, Mycobacterium abscessus, can cause clonal outbreaks, and these bacteria exhibit a highly resistant antimicrobial susceptibility profile. Here, we present an investigation of two small outbreaks of M. abscessus: first in a pediatric clinic setting and second in a tattoo parlour from Quebec. Two whole genome sequencing approaches were utilized for genotyping: MAB-MLST, a multilocus sequencing typing scheme containing housekeeping, identification, and antimicrobial resistance genes, and SNVPhyl that uses phylogenetics to determine single nucleotide variations between strains. MAB-MLST results showed that the pediatric outbreak strains had two distinct sequence types, demonstrating that one strain did not belong to the outbreak, while all tattoo outbreak isolates belonged to the same sequence type. SNVPhyl results were similar to MAB-MLST results and showed that the pediatric outbreak strains tightly clustered together with 0-1 SNVs between isolates, a sharp contrast between unrelated strains used as controls. Similar results were seen for tattoo outbreak cases with 3-11 SNVs between isolates. NTM infections can be difficult to identify, and outbreak investigations can be complicated. Thus, WGS tools can be used in public health outbreak investigations as they provide high discriminatory power.
Collapse
|
9
|
Lekko YM, Ooi PT, Omar S, Mazlan M, Ramanoon SZ, Jasni S, Jesse FFA, Che-Amat A. Mycobacterium tuberculosis complex in wildlife: Review of current applications of antemortem and postmortem diagnosis. Vet World 2020; 13:1822-1836. [PMID: 33132593 PMCID: PMC7566238 DOI: 10.14202/vetworld.2020.1822-1836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) is a chronic inflammatory and zoonotic disease caused by Mycobacterium tuberculosis complex (MTBC) members, which affects various domestic animals, wildlife, and humans. Some wild animals serve as reservoir hosts in the transmission and epidemiology of the disease. Therefore, the monitoring and surveillance of both wild and domestic hosts are critical for prevention and control strategies. For TB diagnosis, the single intradermal tuberculin test or the single comparative intradermal tuberculin test, and the gamma-interferon test, which is regarded as an ancillary test, are used. Postmortem examination can identify granulomatous lesions compatible with a diagnosis of TB. In contrast, smears of the lesions can be stained for acid-fast bacilli, and samples of the affected organs can be subjected to histopathological analyses. Culture is the gold standard test for isolating mycobacterial bacilli because it has high sensitivity and specificity compared with other methods. Serology for antibody detection allows the testing of many samples simply, rapidly, and inexpensively, and the protocol can be standardized in different laboratories. Molecular biological analyses are also applicable to trace the epidemiology of the disease. In conclusion, reviewing the various techniques used in MTBC diagnosis can help establish guidelines for researchers when choosing a particular diagnostic method depending on the situation at hand, be it disease outbreaks in wildlife or for epidemiological studies. This is because a good understanding of various diagnostic techniques will aid in monitoring and managing emerging pandemic threats of infectious diseases from wildlife and also preventing the potential spread of zoonotic TB to livestock and humans. This review aimed to provide up-to-date information on different techniques used for diagnosing TB at the interfaces between wildlife, livestock, and humans.
Collapse
Affiliation(s)
- Yusuf Madaki Lekko
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Maiduguri, 1069 PMB, Maiduguri, Borno State, Nigeria
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sharina Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mazlina Mazlan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Zubaidah Ramanoon
- Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sabri Jasni
- Department of Paraclinical, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Azlan Che-Amat
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|