1
|
Stephen S, Kadye A, Majuru XN, Madamombe T, Sokwe J, Madondo T, Tinarwo K, Tsuvani L, Kawome T, Malunga F, Simbi R. Diagnostic Performance of STANDARD™ M10 Multidrug-resistant Tuberculosis Assay for Detection of Mycobacterium tuberculosis and Rifampicin and Isoniazid Resistance in Zimbabwe. Int J Mycobacteriol 2024; 13:22-27. [PMID: 38771275 DOI: 10.4103/ijmy.ijmy_194_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/12/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Although Zimbabwe has transitioned out of the 30 high-burden countries, it still remained in the 30 high multidrug-resistant (MDR)/rifampicin-resistant tuberculosis (TB) burden. Rapid detection of rifampicin (RIF) and isoniazid (INH) is essential for the diagnosis of MDR-TB. The World Health Organization has recommended the use of molecular WHO-recommended rapid diagnostic (mWRD) for TB and DR-TB. STANDARD™ M10 MDR-TB assay is a new molecular rapid diagnostic assay developed by SD Biosensor for the detection of Mycobacterium tuberculosis (MTB) and RIF and INF resistance. This study aims to determine the diagnostic accuracy of STANDARD™ M10 MDR-TB assay. METHODS The study was conducted on 214 samples with different MTB and RIF and INH resistance status. The STANDARD™ M10 MDR-TB assay was performed according to the manufacturer's instructions. Xpert MTB/RIF Ultra, MGIT culture, and phenotypic drug susceptibility testing are used as comparative methods. RESULTS The sensitivity and specificity of STANDARD™ M10 MDR-TB assay for the detection of MTB are 99% and 97.9%, respectively. The sensitivity and specificity of the assay for detection of MDR-TB were 97.8% and 100%, respectively. CONCLUSION The STANDARD™ M10 MDR-TB assay demonstrated high diagnostic accuracy in the detection of MTB and RIF and INH resistance. This molecular assay can also be used as an alternative to other mWRD assays.
Collapse
Affiliation(s)
- Stephen Stephen
- National Microbiology Reference Laboratory-Tuberculosis (NMRL-TB), Sally Mugabe Central Hospital, Lobengula Street, Southerton, Harare, Zimbabwe
| | - Agrippa Kadye
- National Microbiology Reference Laboratory-Tuberculosis (NMRL-TB), Sally Mugabe Central Hospital, Lobengula Street, Southerton, Harare, Zimbabwe
| | - Xmas Ngoni Majuru
- National Microbiology Reference Laboratory-Tuberculosis (NMRL-TB), Sally Mugabe Central Hospital, Lobengula Street, Southerton, Harare, Zimbabwe
| | - Tariro Madamombe
- National Microbiology Reference Laboratory-Tuberculosis (NMRL-TB), Sally Mugabe Central Hospital, Lobengula Street, Southerton, Harare, Zimbabwe
| | - Janet Sokwe
- National Microbiology Reference Laboratory-Tuberculosis (NMRL-TB), Sally Mugabe Central Hospital, Lobengula Street, Southerton, Harare, Zimbabwe
| | - Tinashe Madondo
- National Microbiology Reference Laboratory-Tuberculosis (NMRL-TB), Sally Mugabe Central Hospital, Lobengula Street, Southerton, Harare, Zimbabwe
| | - Kennedy Tinarwo
- National Microbiology Reference Laboratory-Tuberculosis (NMRL-TB), Sally Mugabe Central Hospital, Lobengula Street, Southerton, Harare, Zimbabwe
| | - Linnience Tsuvani
- National Microbiology Reference Laboratory-Tuberculosis (NMRL-TB), Sally Mugabe Central Hospital, Lobengula Street, Southerton, Harare, Zimbabwe
| | - Takudzwa Kawome
- National Microbiology Reference Laboratory-Tuberculosis (NMRL-TB), Sally Mugabe Central Hospital, Lobengula Street, Southerton, Harare, Zimbabwe
| | - Florence Malunga
- National Microbiology Reference Laboratory-Tuberculosis (NMRL-TB), Sally Mugabe Central Hospital, Lobengula Street, Southerton, Harare, Zimbabwe
| | - Raiva Simbi
- Directorate of Laboratory Services, Ministry of Health and Child Care, Kaguvi Building, Fourth Street, Causeway, Harare, Zimbabwe
| |
Collapse
|
2
|
David A, Scott LE, Da Silva P, Mayne E, Stevens WS. Storage of Mycobacterium tuberculosis culture isolates in Microbank TM beads at a South African laboratory. Afr J Lab Med 2023; 12:2172. [PMID: 38023785 PMCID: PMC10646387 DOI: 10.4102/ajlm.v12i1.2172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background Mycobacterium tuberculosis complex (MTBC) isolates are typically stored at -70 °C in cryovials containing 1 mL aliquots of a liquid medium, with or without 50% glycerol. Multiple uses of the culture stock may decrease the strain viability while increasing the risk of culture contamination. Small culture aliquots may be more practical; however, storage capacity remains challenging. MicrobankTM beads (25 beads/vial) for the long-term storage of fungal cultures is well documented, but their use for storing MTBC isolates is uninvestigated. Objective The study aimed to determine the feasibility of using MicrobankTM beads for long-term storage of MTBC isolates at a laboratory in South Africa. Methods In February 2020, 20 isolates in liquid culture were stored in MicrobankTM beads, following an in-house developed protocol, at -70 °C. At defined time points (16 months [15 June 2021] and 21 months [18 November 2021]), two beads were retrieved from each storage vial and assessed for viability and level of contamination. Results Stored liquid isolates demonstrated MTBC growth within an average time-to-detection of 18 days following retrieval, even at 21 months post storage. Contaminating organisms were detected in 2 of 80 (2.5%) culture isolates. Conclusion MicrobankTM beads will allow for the reculture of up to 25 culture isolates using a reduced culture volume compared to current storage methods. MicrobankTM beads represent a storage solution for the medium-term storage of MTBC isolates. What this study adds This study evaluated the use of MicrobankTM beads as an alternate method for storing MTBC culture isolates at -70 °C and provided a suitable option for medium-term storage of MTBC.
Collapse
Affiliation(s)
- Anura David
- Wits Diagnostic Innovation Hub, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lesley E. Scott
- Wits Diagnostic Innovation Hub, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pedro Da Silva
- National Priority Program, National Health Laboratory Services, Johannesburg, South Africa
| | - Elizabeth Mayne
- National Priority Program, National Health Laboratory Services, Johannesburg, South Africa
- Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Wendy S. Stevens
- Wits Diagnostic Innovation Hub, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Priority Program, National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
3
|
Kaewseekhao B, Sirichoat A, Roytrakul S, Yingchutrakul Y, Reechaipichitkul W, Faksri K. Serum proteomics analysis for differentiation among Mycobacterium tuberculosis infection categories. Tuberculosis (Edinb) 2023; 141:102366. [PMID: 37379738 DOI: 10.1016/j.tube.2023.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Inhalation of Mycobacterium tuberculosis (Mtb) bacilli can lead to a range of TB categories including early clearance (EC), latent TB infection (LTBI) and active TB (ATB). There are few biomarkers available to differentiate among these TB categories: effective new biomarkers are badly needed. Here, we analyzed the serum proteins from 26 ATB cases, 20 LTBI cases, 34 EC cases and 38 healthy controls (HC) using label-free LC-MS/MS. The results were analyzed using MaxQuant software and matched to three different bacterial proteomics databases, including Mtb, Mycobacterium spp. and normal lung flora. PCA of protein candidates using the three proteomics databases revealed 44.5% differentiation power to differentiate among four TB categories. There were 289 proteins that showed potential for distinguishing between each pair of groups among TB categories. There were 50 candidate protein markers specifically found in ATB and LTBI but not in HC and EC groups. Decision trees using the top five candidate biomarkers (A0A1A2RWZ9, A0A1A3FMY8, A0A1A3KIY2, A0A5C7MJH5 and A0A1X0XYR3) had 92.31% accuracy to differentiate among TB categories and the accuracy was increased to 100% when using 10 candidate biomarkers. Our study shows that proteins expressed from Mycobacterium spp. have the potential to be used to differentiate among TB categories.
Collapse
Affiliation(s)
- Benjawan Kaewseekhao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Auttawit Sirichoat
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wipa Reechaipichitkul
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand; Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
4
|
Soedarsono S, Mertaniasih NM, Hasan H, Kusmiati T, Permatasari A, Kusumaningrum D, Wijaksono W. Line probe assay test in new cases of tuberculosis with rifampicin resistance not detected by Xpert MTB/RIF. Int J Mycobacteriol 2022; 11:429-434. [PMID: 36510930 DOI: 10.4103/ijmy.ijmy_176_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background In Indonesia, the National guideline for tuberculosis only recommended taking the DST to check INH resistance only for re-treatment cases of rifampicin-susceptible TB (RS-TB) detected by Xpert MTB/RIF. This study was conducted mainly to evaluate the proportion of isoniazid resistance in new cases of RS-TB according to the Xpert MTB/RIF. Methods This was an observational descriptive study in RS-TB new patients diagnosed by Xpert MTB/RIF. Sputum samples were examined using first-line LPA and evaluated by culture-based DST. Results of first-line LPA and culture-based DST were compared and presented. Results Fifty-four new cases of RS-TB (according Xpert MTB/RIF) were enrolled in this study. INH resistance was detected in 4 (7.4%) using FL-LPA and in 5 (9.3%) using culture-based DST. RIF resistance was also found in 1 (1.9%) using FL-LPA and in 2 (3.7%) using culture-based DST. Ethambutol resistance was also detected in 4 (7.4%) using culture-based DST. Conclusion First-line LPA successfully revealed 4 (7.4%) of Hr-TB in new RS-TB cases detected by the Xpert MTB/RIF. In new cases with RS-TB detected by the Xpert MTB/RIF, FL- LPA can be used as rapid molecular DST to detect RIF and INH resistance followed by culture-based DST to examine other drug resistance.
Collapse
Affiliation(s)
- Soedarsono Soedarsono
- Department of Pulmonology and Respiratory Medicine, Airlangga University; Sub-Pulmonology Department of Internal Medicine, Faculty of Medicine, Hang Tuah University, Surabaya, Indonesia
| | - Ni Made Mertaniasih
- Department of Clinical Microbiology, Faculty of Medicine; Tuberculosis Study Group, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Helmia Hasan
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Tutik Kusmiati
- Department of Pulmonology and Respiratory Medicine; Tuberculosis Study Group, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Ariani Permatasari
- Department of Pulmonology and Respiratory Medicine; Tuberculosis Study Group, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Deby Kusumaningrum
- Department of Clinical Microbiology, Faculty of Medicine; Tuberculosis Study Group, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Whendy Wijaksono
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
5
|
Heyckendorf J, Georghiou SB, Frahm N, Heinrich N, Kontsevaya I, Reimann M, Holtzman D, Imperial M, Cirillo DM, Gillespie SH, Ruhwald M. Tuberculosis Treatment Monitoring and Outcome Measures: New Interest and New Strategies. Clin Microbiol Rev 2022; 35:e0022721. [PMID: 35311552 PMCID: PMC9491169 DOI: 10.1128/cmr.00227-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite the advent of new diagnostics, drugs and regimens, tuberculosis (TB) remains a global public health threat. A significant challenge for TB control efforts has been the monitoring of TB therapy and determination of TB treatment success. Current recommendations for TB treatment monitoring rely on sputum and culture conversion, which have low sensitivity and long turnaround times, present biohazard risk, and are prone to contamination, undermining their usefulness as clinical treatment monitoring tools and for drug development. We review the pipeline of molecular technologies and assays that serve as suitable substitutes for current culture-based readouts for treatment response and outcome with the potential to change TB therapy monitoring and accelerate drug development.
Collapse
Affiliation(s)
- Jan Heyckendorf
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | | | - Nicole Frahm
- Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
| | - Norbert Heinrich
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich (LMU), Munich, Germany
| | - Irina Kontsevaya
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - Maja Reimann
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - David Holtzman
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | - Marjorie Imperial
- University of California San Francisco, San Francisco, California, USA, United States
| | - Daniela M. Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stephen H. Gillespie
- School of Medicine, University of St Andrewsgrid.11914.3c, St Andrews, Fife, Scotland
| | - Morten Ruhwald
- FIND, the Global Alliance for Diagnostics, Geneva, Switzerland
| | | |
Collapse
|
6
|
Aghajani J, Farnia P, Farnia P, Ghanavi J, Velayati AA. Molecular Dynamic Simulations and Molecular Docking as a Potential Way for Designed New Inhibitor Drug without Resistance. TANAFFOS 2022; 21:1-14. [PMID: 36258912 PMCID: PMC9571241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/30/2021] [Indexed: 06/16/2023]
Abstract
Mycobacterium tuberculosis is the cause of tuberculosis in humans and is responsible for more than 2 million deaths per year. Despite the development of anti-tuberculosis drugs (Isoniazid, Rifampicin, Ethambutol, pyrazinamide, streptomycin, etc.) and the TB vaccine, this disease has claimed the lives of many people around the world. Drug resistance in this disease is increasing day by day. Conventional methods for discovering and developing drugs are usually time-consuming and expensive. Therefore, a better method is needed to identify, design, and manufacture TB drugs without drug resistance. Bioinformatics applications in obtaining new drugs at the structural level include studies of the mechanism of drug resistance, detection of drug interactions, and prediction of mutant protein structure. In the present study, computer-based approaches including molecular dynamics simulation and molecular docking as a novel and efficient method for the identification and investigation of new cases as well as the investigation of mutated proteins and compounds will be examined .
Collapse
Affiliation(s)
- Jafar Aghajani
- Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Poopak Farnia
- Department of Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parissa Farnia
- Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalaledin Ghanavi
- Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Mycobacteriology Research Center (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Van Deun A, Bola V, Lebeke R, Kaswa M, Hossain MA, Gumusboga M, Torrea G, De Jong BC, Rigouts L, Decroo T. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac037. [PMID: 35415609 PMCID: PMC8994197 DOI: 10.1093/jacamr/dlac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/13/2022] [Indexed: 11/14/2022] Open
Abstract
Background Objectives Methods Results Conclusions
Collapse
Affiliation(s)
| | - Valentin Bola
- Programme National de Lutte contre la Tuberculose, Direction Provinciale de Kinshasa, Kinshasa, République Démocratique du Congo
| | - Rossin Lebeke
- Programme National de Lutte contre la Tuberculose, Direction Provinciale de Kinshasa, Kinshasa, République Démocratique du Congo
| | - Michel Kaswa
- Programme National de Lutte contre la Tuberculose, Direction Nationale, Kinshasa, République Démocratique du Congo
| | | | - Mourad Gumusboga
- Institute of Tropical Medicine, Unit of Mycobacteriology, Department of Biomedical Sciences, 2000 Antwerp, Belgium
| | - Gabriela Torrea
- Institute of Tropical Medicine, Unit of Mycobacteriology, Department of Biomedical Sciences, 2000 Antwerp, Belgium
| | - Bouke Catharine De Jong
- Institute of Tropical Medicine, Unit of Mycobacteriology, Department of Biomedical Sciences, 2000 Antwerp, Belgium
| | - Leen Rigouts
- Institute of Tropical Medicine, Unit of Mycobacteriology, Department of Biomedical Sciences, 2000 Antwerp, Belgium
| | - Tom Decroo
- Institute of Tropical Medicine, Unit of HIV and TB, Department of Clinical Sciences, 2000 Antwerp, Belgium
- Corresponding author. E-mail:
| |
Collapse
|
8
|
Mbelele PM, Utpatel C, Sauli E, Mpolya EA, Mutayoba BK, Barilar I, Dreyer V, Merker M, Sariko ML, Swema BM, Mmbaga BT, Gratz J, Addo KK, Pletschette M, Niemann S, Houpt ER, Mpagama SG, Heysell SK. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac042. [PMID: 35465240 PMCID: PMC9021016 DOI: 10.1093/jacamr/dlac042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background Rifampicin- or multidrug-resistant (RR/MDR) Mycobacterium tuberculosis complex (MTBC) strains account for considerable morbidity and mortality globally. WGS-based prediction of drug resistance may guide clinical decisions, especially for the design of RR/MDR-TB therapies. Methods We compared WGS-based drug resistance-predictive mutations for 42 MTBC isolates from MDR-TB patients in Tanzania with the MICs of 14 antibiotics measured in the Sensititre™ MycoTB assay. An isolate was phenotypically categorized as resistant if it had an MIC above the epidemiological-cut-off (ECOFF) value, or as susceptible if it had an MIC below or equal to the ECOFF. Results Overall, genotypically non-wild-type MTBC isolates with high-level resistance mutations (gNWT-R) correlated with isolates with MIC values above the ECOFF. For instance, the median MIC value (mg/L) for rifampicin-gNWT-R strains was >4.0 (IQR 4.0–4.0) compared with 0.5 (IQR 0.38–0.50) in genotypically wild-type (gWT-S, P < 0.001); isoniazid-gNWT-R >4.0 (IQR 2.0–4.0) compared with 0.25 (IQR 0.12–1.00) among gWT-S (P = 0.001); ethionamide-gNWT-R 15.0 (IQR 10.0–20.0) compared with 2.50 (IQR; 2.50–5.00) among gWT-S (P < 0.001). WGS correctly predicted resistance in 95% (36/38) and 100% (38/38) of the rifampicin-resistant isolates with ECOFFs >0.5 and >0.125 mg/L, respectively. No known resistance-conferring mutations were present in genes associated with resistance to fluoroquinolones, aminoglycosides, capreomycin, bedaquiline, delamanid, linezolid, clofazimine, cycloserine, or p-amino salicylic acid. Conclusions WGS-based drug resistance prediction worked well to rule-in phenotypic drug resistance and the absence of second-line drug resistance-mediating mutations has the potential to guide the design of RR/MDR-TB regimens in the future.
Collapse
Affiliation(s)
- Peter M. Mbelele
- Kibong’oto Infectious Diseases Hospital (KIDH), Siha, Kilimanjaro, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
- Corresponding author. E-mail:
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Elingarami Sauli
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Emmanuel A. Mpolya
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Beatrice K. Mutayoba
- Ministry of Health, National AIDS Control Program, Department of Preventive Services, Dodoma, Tanzania
- CIHLMU Center for International Health, University Hospital, LMU Munich, Germany
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | | | | | - Blandina T. Mmbaga
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jean Gratz
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Kennedy K. Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michel Pletschette
- CIHLMU Center for International Health, University Hospital, LMU Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Stellah G. Mpagama
- Kibong’oto Infectious Diseases Hospital (KIDH), Siha, Kilimanjaro, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
9
|
Biomarkers that correlate with active pulmonary tuberculosis treatment response: a systematic review and meta-analysis. J Clin Microbiol 2021; 60:e0185921. [PMID: 34911364 PMCID: PMC8849205 DOI: 10.1128/jcm.01859-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current WHO recommendations for monitoring treatment response in adult pulmonary tuberculosis (TB) are sputum smear microscopy and/or culture conversion at the end of the intensive phase of treatment. These methods either have suboptimal accuracy or a long turnaround time. There is a need to identify alternative biomarkers to monitor TB treatment response. We conducted a systematic review of active pulmonary TB treatment monitoring biomarkers. We screened 9,739 articles published between 1 January 2008 and 31 December 2020, of which 77 met the inclusion criteria. When studies quantitatively reported biomarker levels, we meta-analyzed the average fold change in biomarkers from pretreatment to week 8 of treatment. We also performed a meta-analysis pooling the fold change since the previous time point collected. A total of 81 biomarkers were identified from 77 studies. Overall, these studies exhibited extensive heterogeneity with regard to TB treatment monitoring study design and data reporting. Among the biomarkers identified, C-reactive protein (CRP), interleukin-6 (IL-6), interferon gamma-induced protein 10 (IP-10), and tumor necrosis factor alpha (TNF-α) had sufficient data to analyze fold changes. All four biomarker levels decreased during the first 8 weeks of treatment relative to baseline and relative to previous time points collected. Based on limited data available, CRP, IL-6, IP-10, and TNF-α have been identified as biomarkers that should be further explored in the context of TB treatment monitoring. The extensive heterogeneity in TB treatment monitoring study design and reporting is a major barrier to evaluating the performance of novel biomarkers and tools for this use case. Guidance for designing and reporting treatment monitoring studies is urgently needed.
Collapse
|
10
|
Said B, Charlie L, Getachew E, Wanjiru CL, Abebe M, Manyazewal T. Molecular bacterial load assay versus culture for monitoring treatment response in adults with tuberculosis. SAGE Open Med 2021; 9:20503121211033470. [PMID: 34349999 PMCID: PMC8287413 DOI: 10.1177/20503121211033470] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
The lack of rapid, sensitive, and deployable tuberculosis diagnostic tools is
hampering the early diagnosis of tuberculosis and early detection of treatment
failures. The conventional sputum smear microscopy or Xpert MTB/RIF assay cannot
distinguish between alive and dead bacilli and the culture method delays
providing results. Tuberculosis molecular bacterial load assay is a reverse
transcriptase real-time quantitative polymerase chain reaction that quantifies
viable tuberculosis bacillary load as a marker of treatment response for
patients on anti-tuberculosis therapy. However, results are not synthesized
enough to inform its comparative advantage to tuberculosis culture technique
which is yet the gold standard of care. With this review, we searched electronic
databases, including PubMed, Embase, and Web of Science, from March 2011 up to
February 2021 for clinical trials or prospective cohort studies that compared
tuberculosis molecular bacterial load assay with tuberculosis culture in adults.
We included eight studies that meet the inclusion criteria. Tuberculosis
molecular bacterial load assay surpasses culture in monitoring patients with
tuberculosis during the first few weeks of anti-tuberculosis treatment. It is
more desirable over culture for its shorter time to results, almost zero rates
of contamination, need for less expertise on the method, early rate of decline,
lower running cost, and reproducibility. Its rapid and specific tuberculosis
treatment monitoring competency benefits patients and healthcare providers to
monitor changes of bacillary load among isolates with drug-susceptible or
resistance to anti-tuberculosis regimens. Despite of the high installing cost of
the tuberculosis molecular bacterial load assay method, molecular expertise, and
a well-equipped laboratory, tuberculosis molecular bacterial load assay is a
cost-effective method with comparison to culture in operational running. To
achieve maximum utility in high tuberculosis burden settings, an intensive
initial investment in nucleic acid extraction and polymerase chain reaction
equipment, training in procedures, and streamlining laboratory supply
procurement systems are crucial. More evidence is needed to demonstrate the
potential large-scale and sustainable use of tuberculosis molecular bacterial
load assay over culture in resource-constrained settings.
Collapse
Affiliation(s)
- Bibie Said
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,Kibong'oto National Tuberculosis Hospital, Kilimanjaro, Tanzania
| | - Loveness Charlie
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Emnet Getachew
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Public Health, College of Health Science, Arsi University, Asella, Ethiopia
| | - Catherine Lydiah Wanjiru
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mekdelawit Abebe
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,St. Peter Tuberculosis Specialized Hospital, Addis Ababa, Ethiopia
| | - Tsegahun Manyazewal
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
11
|
Mbelele PM, Sauli E, Mpolya EA, Mohamed SY, Addo KK, Mfinanga SG, Heysell SK, Mpagama S. TB or not TB? Definitive determination of species within the Mycobacterium tuberculosis complex in unprocessed sputum from adults with presumed multidrug-resistant tuberculosis. Trop Med Int Health 2021; 26:1057-1067. [PMID: 34107112 PMCID: PMC8886495 DOI: 10.1111/tmi.13638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objectives Differences among Mycobacterium tuberculosis complex (MTC) species may predict drug resistance or treatment success. Thus, we optimised and deployed the genotype MTBC assay (gMTBC) to identify MTC to the species level, and then performed comparative genotypic drug‐susceptibility testing to anti‐tuberculosis drugs from direct sputum of patients with presumed multidrug‐resistant tuberculosis (MDR‐TB) by the MTBDRplus/sl reference method. Methods Patients with positive Xpert® MTB/RIF (Xpert) results were consented to provide early‐morning‐sputum for testing by the gMTBC and the reference MTBDRplus/sl. Chi‐square or Fisher’s exact test compared proportions. Modified Poisson regression modelled detection of MTC by gMTBC. Results Among 73 patients, 53 (73%) were male and had a mean age of 43 (95% CI; 40–45) years. In total, 34 (47%), 36 (49%) and 38 (55%) had positive gMTBC, culture and MTBDR respectively. Forty patients (55%) had low quantity MTC by Xpert, including 31 (78%) with a negative culture. gMTBC was more likely to be positive in patients with chest cavity 4.18 (1.31–13.32, P = 0.016), high‐quantity MTC by Xpert 3.03 (1.35–6.82, P = 0.007) and sputum smear positivity 1.93 (1.19–3.14, P = 0.008). The accuracy of gMTBC in detecting MTC was 95% (95% CI; 86–98; κ = 0.89) compared to MTBDRplus/sl. All M. tuberculosis/canettii identified by gMTB were susceptible to fluoroquinolone and aminoglycosides/capreomycin. Conclusions The concordance between the gMTBC assay and MTBDRplus/sl in detecting MTC was high but lagged behind the yield of Xpert MTB/RIF. All M. tuberculosis/canettii were susceptible to fluoroquinolones, a core drug in MDR‐TB treatment regimens.
Collapse
Affiliation(s)
- Peter M Mbelele
- Kibong'oto Infectious Diseases Hospital, Kilimanjaro, Tanzania.,Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Elingarami Sauli
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Emmanuel A Mpolya
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Sagal Y Mohamed
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Kennedy K Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sayoki G Mfinanga
- National Institute for Medical Research, Muhimbili Center, Dar es salaam, Tanzania.,Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Stellah Mpagama
- Kibong'oto Infectious Diseases Hospital, Kilimanjaro, Tanzania.,Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
12
|
Katale BZ, Mbelele PM, Lema NA, Campino S, Mshana SE, Rweyemamu MM, Phelan JE, Keyyu JD, Majigo M, Mbugi EV, Dockrell HM, Clark TG, Matee MI, Mpagama S. Whole genome sequencing of Mycobacterium tuberculosis isolates and clinical outcomes of patients treated for multidrug-resistant tuberculosis in Tanzania. BMC Genomics 2020; 21:174. [PMID: 32085703 PMCID: PMC7035673 DOI: 10.1186/s12864-020-6577-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/12/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tuberculosis (TB), particularly multi- and or extensive drug resistant TB, is still a global medical emergency. Whole genome sequencing (WGS) is a current alternative to the WHO-approved probe-based methods for TB diagnosis and detection of drug resistance, genetic diversity and transmission dynamics of Mycobacterium tuberculosis complex (MTBC). This study compared WGS and clinical data in participants with TB. RESULTS This cohort study performed WGS on 87 from MTBC DNA isolates, 57 (66%) and 30 (34%) patients with drug resistant and susceptible TB, respectively. Drug resistance was determined by Xpert® MTB/RIF assay and phenotypic culture-based drug-susceptibility-testing (DST). WGS and bioinformatics data that predict phenotypic resistance to anti-TB drugs were compared with participant's clinical outcomes. They were 47 female participants (54%) and the median age was 35 years (IQR): 29-44). Twenty (23%) and 26 (30%) of participants had TB/HIV co-infection BMI < 18 kg/m2 respectively. MDR-TB participants had MTBC with multiple mutant genes, compared to those with mono or polyresistant TB, and the majority belonged to lineage 3 Central Asian Strain (CAS). Also, MDR-TB was associated with delayed culture-conversion (median: IQR (83: 60-180 vs. 51:30-66) days). WGS had high concordance with both culture-based DST and Xpert® MTB/RIF assay in detecting drug resistance (kappa = 1.00). CONCLUSION This study offers comparison of mutations detected by Xpert and WGS with phenotypic DST of M. tuberculosis isolates in Tanzania. The high concordance between the different methods and further insights provided by WGS such as PZA-DST, which is not routinely performed in most resource-limited-settings, provides an avenue for inclusion of WGS into diagnostic matrix of TB including drug-resistant TB.
Collapse
Affiliation(s)
- Bugwesa Z Katale
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Peter M Mbelele
- Kibong'oto Infectious Disease Hospital (KIDH), Sanya Juu, Tanzania
- Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Nsiande A Lema
- Field Epidemiology and Laboratory Training Programme, Dar es Salaam, Tanzania
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Stephen E Mshana
- Department of Medical Microbiology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Mark M Rweyemamu
- Southern African Centre for Infectious Diseases Surveillance (SACIDS), Sokoine University of Agriculture (SUA), Morogoro, Tanzania
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Mtebe Majigo
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Erasto V Mbugi
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Hazel M Dockrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene &Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| | - Mecky I Matee
- Department of Microbiology and Immunology, School of Medicine, Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania.
| | - Stellah Mpagama
- Kibong'oto Infectious Disease Hospital (KIDH), Sanya Juu, Tanzania
| |
Collapse
|
13
|
Kaewseekhao B, Nuntawong N, Eiamchai P, Roytrakul S, Reechaipichitkul W, Faksri K. Diagnosis of active tuberculosis and latent tuberculosis infection based on Raman spectroscopy and surface-enhanced Raman spectroscopy. Tuberculosis (Edinb) 2020; 121:101916. [PMID: 32279876 DOI: 10.1016/j.tube.2020.101916] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Current tools for screening LTBI are limited due to the long turnaround time required, cross-reactivity of tuberculin skin test to BCG vaccine and the high cost of interferon gamma release assay (IGRA) tests. We evaluated Raman spectroscopy (RS) for serum-protein fingerprinting from 26 active TB (ATB) cases, 20 LTBI cases, 34 early clearance (EC; TB-exposed persons with undetected infection) and 38 healthy controls (HC). RS at 532 nm using candidate peaks provided 92.31% sensitivity and 90.0% to distinguish ATB from LTBI, 84.62% sensitivity and 89.47% specificity to distinguish ATB from HC and 87.10% sensitivity and 85.0% specificity to distinguish LTBI from EC. RS at 532 nm with the random forest model provided 86.84% sensitivity and 65.0% specificity to distinguish LTBI from HC and 94.74% sensitivity and 87.10% specificity to distinguish EC from HC. Using preliminary sample sets (n = 5 for each TB-infection category), surface-enhanced Raman spectroscopy (SERS) showed high potential diagnostic performance, distinguishing very clearly among all TB-infection categories with 100% sensitivity and specificity. With lower cost, shorter turnaround time and performance comparable to that of IGRAs, our study demonstrated RS and SERS to have high potential for ATB and LTBI diagnosis.
Collapse
Affiliation(s)
- Benjawan Kaewseekhao
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Noppadon Nuntawong
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Rama VI Rd., Pathumthani, Thailand
| | - Pitak Eiamchai
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Rama VI Rd., Pathumthani, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Rama VI Rd., Pathumthani, Thailand
| | - Wipa Reechaipichitkul
- Department of Medicine and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kiatichai Faksri
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|