1
|
Demey B, Bentz M, Descamps V, Morel V, Francois C, Castelain S, Helle F, Brochot E. BK Polyomavirus bkv-miR-B1-5p: A Stable Micro-RNA to Monitor Active Viral Replication after Kidney Transplantation. Int J Mol Sci 2022; 23:ijms23137240. [PMID: 35806242 PMCID: PMC9266457 DOI: 10.3390/ijms23137240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Bkv-miR-B1-5p is a viral micro-RNA (miRNA) specifically produced during BK polyomavirus (BKPyV) replication. Recent studies have suggested using bkv-miR-B1-5p as a biomarker to monitor viral infection and predict complications in kidney transplant patients. To identify the technical limitations of this miRNA quantification in biological samples, knowledge of its stability and distribution in the extracellular compartment is necessary. Moreover, a proof of concept for using bkv-miR-B1-5p as a biomarker of active replication in chronic infection is still missing in the published literature. Methods: The stability of bkv-miR-B1-5p was evaluated in samples derived from cell cultures and in urine from BKPyV-infected kidney transplant recipients. The miRNA was quantified in different fractions of the extracellular compartment, including exosomes, and protein binding was evaluated. Finally, we developed an in vitro model for chronic culture of BKPyV clinical isolates to observe changes in the bkv-miR-B1-5p level during persistent infections. Results: Bkv-miR-B1-5p is a stable biomarker in samples from humans and in vitro experiments. Marginally associated with the exosomes, most of the circulating bkv-miR-B1-5p is bound to proteins, especially Ago2, so the miRNA quantification does not require specific exosome isolation. The bkv-miR-B1-5p level is predictable of viral infectivity, which makes it a potential specific biomarker of active BKPyV replication after kidney transplantation.
Collapse
Affiliation(s)
- Baptiste Demey
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
- Correspondence: (B.D.); (E.B.); Tel.: +33-322087065 (B.D.)
| | - Marine Bentz
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Véronique Descamps
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Virginie Morel
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Catherine Francois
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Sandrine Castelain
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Francois Helle
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
| | - Etienne Brochot
- Laboratoire de Virologie, Centre Hospitalier Universitaire, F-80000 Amiens, France; (V.D.); (V.M.); (C.F.); (S.C.)
- UR UPJV 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, F-80000 Amiens, France; (M.B.); (F.H.)
- Correspondence: (B.D.); (E.B.); Tel.: +33-322087065 (B.D.)
| |
Collapse
|
2
|
The Living-Related Kidney Transplant Program in Brunei Darussalam: Lessons Learnt from a Nascent National Program in a Small, Muslim, and Asian Country. J Transplant 2021; 2021:8828145. [PMID: 33968443 PMCID: PMC8081633 DOI: 10.1155/2021/8828145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/21/2021] [Accepted: 03/30/2021] [Indexed: 11/26/2022] Open
Abstract
Brunei Darussalam commenced its living-related renal transplant program in 2013, with subsequent attainment of independent local capacity and proficiency in 2019. The preliminary outcome from the program has already begun to shape the national nephrology landscape with a 36% increment in transplant rate and mitigation of commercialized transplantations. The blueprint for the program was first laid out in 2010 and thereupon executed in four phases. The first phase involved the gathering of evidence to support the establishment of the national program, through researches investigating feasibility, public opinion, quality of life, graft survival, and cost-effectiveness. The second phase focused on laying the foundation of the program through grooming of local expertise, implementation of legal-ethical frameworks, religious legitimization, and propagation of awareness. The third phase worked on facilitating experiential exposure and strengthening local infrastructure through the upgrading of facilities and the introduction of subsidiary services. The fourth phase was implemented in Brunei in 2013 when foreign personnel worked together with the local team to perform the transplants. Between 2013 and 2019, ten kidney transplants were performed, with two being done in 2018 and three in 2019. We hope to inspire other similar countries to develop their own self-sustainable and independent local program.
Collapse
|
3
|
Mohammadi Najafabadi M, Soleimani M, Ahmadvand M, Soufi Zomorrod M, Mousavi SA. Treatment protocols for BK virus associated hemorrhagic cystitis after hematopoietic stem cell transplantation. AMERICAN JOURNAL OF BLOOD RESEARCH 2020; 10:217-230. [PMID: 33224566 PMCID: PMC7675133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) represents a vital curative choice for many disease. However its outcome can be hampered by a variety of transplant associated complications. Hemorrhagic cystitis (HC) considered as one of the major difficulties after HSCT. HC symptoms comprise hematuria, dysuria, burning during urination, urinary frequency, urgency and incontinency, abdominal or suprapubic pain, urinary obstruction, and renal or bladder damage. There are a lot of causes for HC development. BK virus reactivation is one of the major causes of HC after HSCT. There is still no standard and approved treatment protocol for BK virus associated HC (BKV-HC). Treatment of HC is according to the local standard operating procedures, depending on the cause and severity. In this study we will review the current treatments available for this disease. We have divided the therapeutic procedures into 5 categories including conservative therapy, complimentary options, surgical procedures, pharmacological treatments and adoptive cell therapy. We believe that comparing the advantages and disadvantages of different therapies make it easier to choose the best treatment protocol. In addition, we had a greater focus on adoptive cell therapy, because it is a relatively new introduced method and might be a logical alternative to conventional treatments for refractory patients. In total, no definitive recommendation is possible for current available treatments because these procedures have only been utilized sporadically in a limit number of patients. Furthermore, a number of treatment options are only experimental and definitely need more effort.
Collapse
Affiliation(s)
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares UniversityTehran, Iran
| | - Mohammad Ahmadvand
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical SciencesTehran, Iran
| | - Mina Soufi Zomorrod
- Applied Cell Sciences Department, Faculty of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Seyed Asadollah Mousavi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
4
|
Vanichanan J, Udomkarnjananun S, Avihingsanon Y, Jutivorakool K. Common viral infections in kidney transplant recipients. Kidney Res Clin Pract 2018; 37:323-337. [PMID: 30619688 PMCID: PMC6312768 DOI: 10.23876/j.krcp.18.0063] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/22/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022] Open
Abstract
Infectious complications have been considered as a major cause of morbidity and mortality after kidney transplantation, especially in the Asian population. Therefore, prevention, early detection, and prompt treatment of such infections are crucial in kidney transplant recipients. Among all infectious complications, viruses are considered to be the most common agents because of their abundance, infectivity, and latency ability. Herpes simplex virus, varicella zoster virus, Epstein-Barr virus, cytomegalovirus, hepatitis B virus, BK polyomavirus, and adenovirus are well-known etiologic agents of viral infections in kidney transplant patients worldwide because of their wide range of distribution. As DNA viruses, they are able to reactivate after affected patients receive immunosuppressive agents. These DNA viruses can cause systemic diseases or allograft dysfunction, especially in the first six months after transplantation. Pretransplant evaluation and immunization as well as appropriate prophylaxis and preemptive approaches after transplant have been established in the guidelines and are used effectively to reduce the incidence of these viral infections. This review will describe the etiology, diagnosis, prevention, and treatment of viral infections that commonly affect kidney transplant recipients.
Collapse
Affiliation(s)
- Jakapat Vanichanan
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Renal Immunology and Therapeutic Apheresis Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Yingyos Avihingsanon
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Renal Immunology and Therapeutic Apheresis Research Unit, Chulalongkorn University, Bangkok, Thailand.,Excellence Center of Immunology and Immune-mediated Diseases, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kamonwan Jutivorakool
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|