1
|
Chen S, Huang L, Li X, Feng Q, Lu H, Mu J. Hotspots and trends of artificial intelligence in the field of cataracts: a bibliometric analysis. Int Ophthalmol 2024; 44:258. [PMID: 38909343 PMCID: PMC11194187 DOI: 10.1007/s10792-024-03207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE To analyze the hotspots and trends in artificial intelligence (AI) research in the field of cataracts. METHODS The Science Citation Index Expanded of the Web of Science Core Collection was used to collect the research literature related to AI in the field of cataracts, which was analyzed for valuable information such as years, countries/regions, journals, institutions, citations, and keywords. Visualized co-occurrence network graphs were generated through the library online analysis platform, VOSviewer, and CiteSpace tools. RESULTS A total of 222 relevant research articles from 41 countries were selected. Since 2019, the number of related articles has increased significantly every year. China (n = 82, 24.92%), the United States (n = 55, 16.72%) and India (n = 26, 7.90%) were the three countries with the most publications, accounting for 49.54% of the total. The Journal of Cataract and Refractive Surgery (n = 13, 5.86%) and Translational Vision Science & Technology (n = 10, 4.50%) had the most publications. Sun Yat-sen University (n = 25, 11.26%), the Chinese Academy of Sciences (n = 17, 7.66%), and Capital Medical University (n = 16, 7.21%) are the three institutions with the highest number of publications. We discovered through keyword analysis that cataract, diagnosis, imaging, classification, intraocular lens, and formula are the main topics of current study. CONCLUSIONS This study revealed the hot spots and potential trends of AI in terms of cataract diagnosis and intraocular lens power calculation. AI will become more prevalent in the field of ophthalmology in the future.
Collapse
Affiliation(s)
- Si Chen
- Department of Ophthalmology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201599, China
| | - Li Huang
- Department of Ophthalmology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201599, China
| | - Xiaoqing Li
- Department of Ophthalmology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201599, China
| | - Qin Feng
- Department of Ophthalmology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201599, China
| | - Huilong Lu
- Department of Ophthalmology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201599, China
| | - Jing Mu
- Department of Ophthalmology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201599, China.
- Department of Ophthalmology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, China.
| |
Collapse
|
2
|
Shetty N, Shetty R, Nuijts RMMA, Satija A, Roy AS, Kaweri L. Retrospective assessment of accuracy of nine intraocular lens power calculation formulae in eyes with axial myopia. Indian J Ophthalmol 2024; 72:549-553. [PMID: 38546469 PMCID: PMC11149520 DOI: 10.4103/ijo.ijo_1542_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/09/2023] [Indexed: 06/02/2024] Open
Abstract
PURPOSE To compare the accuracy of nine conventional and newer-generation formulae in calculating intraocular lens power in eyes with axial myopia. SETTING Tertiary eye care center, Bengaluru, India. DESIGN Retrospective cross-sectional, comparative study conducted in India. METHODS Patients undergoing uneventful phacoemulsification in eyes with axial length >26 mm were included. Preoperative biometry was done using Lenstar LS 900 (Haag-Streit AG, Switzerland). Single eye of patients undergoing bilateral implantation was randomly selected. Optimized lens constants were used to calculate the predicted postoperative refraction of each formula, which was then compared with the actual refractive outcomes to give the prediction errors, following which subgroup analysis was performed. The Kane formula, Barrett universal II, Emmetropia Verifying Optical (EVO) 2.0, Hill Radial Basis Function (Hill RBF) 3.0, Olsen formula, along with Wang Koch-adjusted four formulae, that is, Sanders Retzlaff Kraff/Theoretical (SRK/T), Holladay 1, Haigis, and Hoffer Q formula, were compared for intraocular lens power calculations. RESULTS One hundred and sixty-five eyes that fulfilled all the inclusion criteria were studied. Hill RBF 3.0 had the lowest mean and median absolute prediction errors (0.355 and 0.275, respectively) compared to all formulas. In subgroup analysis (26-28, >28-30, and >30 mm), significant difference was seen only in extremely long eyes (>30 mm). The Hill RBF 3.0 formula generated the maximum percentage of eyes with refractive errors within ±0.25, ±0.5, ±0.75, and ±1 D (46%, 76.2%, 89.9%, and 95.8%, respectively). CONCLUSION This is the first study evaluating all the formulas exclusively in the myopic eyes. Hill RBF 3 was found to be superior in accuracy to all other formulas.
Collapse
Affiliation(s)
- Naren Shetty
- Department of Cataract and Refractive Services, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Services, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Rudy M M A Nuijts
- Department of Cornea and Refractive Surgery, University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Anuj Satija
- Department of Cataract and Refractive Services, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Abhijit S Roy
- Imaging, Biomechanics and Mathematical Modelling Solutions, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Luci Kaweri
- Department of Cataract and Refractive Services, Narayana Nethralaya, Bangalore, Karnataka, India
| |
Collapse
|
3
|
Ma Y, Xiong R, Liu Z, Young CA, Wu Y, Zheng D, Zhang X, Jin G. Network Meta-analysis of Intraocular Lens Power Calculation Formula Accuracy in 1016 Eyes With Long Axial Length. Am J Ophthalmol 2024; 257:178-186. [PMID: 37726043 DOI: 10.1016/j.ajo.2023.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE To systematically review the literature and quantitatively synthesize the currently available evidence to compare the accuracy of different intraocular lens calculation formulas in eyes with long axial length (AL). DESIGN Network meta-analysis. METHODS PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched for studies published between January 2000 and June 2022. Included were prospective or retrospective clinical studies reporting the following outcomes in cataract patients with long AL (ie, ≥26 mm): percentage of eyes with a prediction error (PE) within ±0.25, ±0.50, and ±1.00 diopters (D). Network meta-analysis was conducted using R software (version 4.2.1). RESULTS Ten prospective or retrospective clinical studies, including 1016 eyes and 11 calculation formulas, were identified. A traditional meta-analysis showed that for the percentage of eyes with PE within ±0.25 and ±0.50 D, the Olsen, Kane, and Emmetropia Verifying Optical (EVO) all had insignificantly higher percentages compared with others. Considering the percentage of eyes with PE within ±1.00 D, the original and modified Wang-Koch adjustment formulas for Holladay 1 (H1-WK and H1-MWK) and EVO formulas showed superiority, but the difference was insignificant. This network meta-analysis revealed that compared with the widely used Barrett Universal II (BUII) formula, the Olsen, Kane, and EVO formulas had higher percentages of eyes with PE within ±0.25, ±0.50, and ±1.00 D (all odds ratios >1 but P >.05). Based on the surface under the cumulative ranking area (SUCRA) values for the percentage of eyes with PE within ±0.25 D, the Olsen (96.4%), Kane (77.5%), and EVO (75.9%) formulas had the highest probability of being in the top 3 of the 11 formulas. CONCLUSIONS The Olsen, Kane, and EVO formulas may perform better than others in calculating IOL power in eyes with long AL. Nevertheless, there is still considerable uncertainty in this regard and the accuracy of these formulas in highly myopic eyes should be confirmed in studies based on large multicenter registries.
Collapse
Affiliation(s)
- Yiyuan Ma
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (Y.M., R.X., Z.L., Y.W., D.Z., X.Z., G.J.), Guangzhou, China
| | - Ruilin Xiong
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (Y.M., R.X., Z.L., Y.W., D.Z., X.Z., G.J.), Guangzhou, China
| | - Zhenzhen Liu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (Y.M., R.X., Z.L., Y.W., D.Z., X.Z., G.J.), Guangzhou, China
| | | | - Yue Wu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (Y.M., R.X., Z.L., Y.W., D.Z., X.Z., G.J.), Guangzhou, China
| | - Danying Zheng
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (Y.M., R.X., Z.L., Y.W., D.Z., X.Z., G.J.), Guangzhou, China
| | - Xinyu Zhang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (Y.M., R.X., Z.L., Y.W., D.Z., X.Z., G.J.), Guangzhou, China
| | - Guangming Jin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University (Y.M., R.X., Z.L., Y.W., D.Z., X.Z., G.J.), Guangzhou, China.
| |
Collapse
|
4
|
Ma Y, Lin Y, Li Y, Hu Z, Qiu K. Accuracy of new intraocular lens calculation formulas in Chinese eyes with short axial lengths. Front Med (Lausanne) 2023; 10:1257873. [PMID: 37881634 PMCID: PMC10597710 DOI: 10.3389/fmed.2023.1257873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Purpose To compare the measurement accuracy of new/updated intraocular lens (IOL) power calculation methods, namely, Kane, Emmetropia Verifying Optical (EVO), with existing methods (Barrett Universal II, Olsen, Haigis, Hoffer Q, Holladay 1, SRK/T) in Chinese eyes with axial lengths ≤ 22.5 mm. Methods The study included data from patients who underwent uneventful cataract surgery with the insertion of ZCB00 IOL. Refractive prediction errors were determined by calculating the difference between postoperative refraction and the predicted refraction using each formula. Various parameters were evaluated, including mean prediction error (ME), mean absolute error (MAE), median absolute error (MedAE), and the percentage of eyes with prediction errors (PE) within different ranges. Results The study enrolled 38 eyes of 38 patients, and the Barrett Universal II formula demonstrated the lowest MAE and MedAE among the tested formulas. Post hoc analysis using Wilcoxon signed-rank pairwise comparisons for non-parametric samples with Bonferroni correction revealed no significant difference in postoperative refractive prediction among all the formulas (P > 0.05). The percentage of eyes with PE within ± 0.5 D was as follows: Barrett Universal II, 81.58%; Haigis, 78.95%; EVO, 76.32%; Olsen, 76.32%; Holladay I, 73.68%; SRK/T, 71.05%; Kane, 68.42%; and Hoffer Q, 65.79%. Conclusion The Barrett Universal II formula was more accurate than the other formulas for Chinese eyes with AL ≤ 22.5 mm.
Collapse
Affiliation(s)
| | | | | | | | - Kunliang Qiu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
5
|
Muacevic A, Adler JR. A Study Linking Axial Length, Corneal Curvature, and Eye Axis With Demographic Characteristics in the Emmetropic Eyes of Bangladeshi People. Cureus 2022; 14:e29925. [PMID: 36225244 PMCID: PMC9536359 DOI: 10.7759/cureus.29925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Background Axial length (AL) and corneal curvature (CC) are one of the furthest critical parameters for optometry and oculoplastic surgery. These two variables are crucial in biometry for accurately measuring the power of the intraocular lens in cataract surgery. This research aimed to determine the association linking axial length and corneal curvature with demographic characteristics in emmetropic eyes of Bangladeshi people. Methods This descriptive cross-sectional research was carried out among 200 emmetropic eyes of Bangladeshi people attending the Department of Ophthalmology at Rajshahi Medical College, Bangladesh, with different eye conditions, between July 2017 and June 2018. Data was gathered by conducting person-to-person interviews, checking visual activity using the Snellen chart, and measuring corneal curvature using an auto-keratometer and axial eyeball length using A-scan ultrasonography. Results A total of 200 attendances were studied, 90 males and 110 females. All were emmetropic. The age range was 21-52 years, and the highest contributors were in the 21-30-year age group. The association between right axial length and right corneal curvature shows a negative relation among both sexes. It was -0.61 (β-coefficient (β-coff)), and highly significant in females at -0.89 (β-coff). Additionally, the association between left axial length and left corneal curvature shows a negative relation of -0.65 (β-coff), which was again highly significant in females at -0.87 (β-coff). Both were not significant in males. There was no significant association linking axial length and eye axis in both sexes. The multivariate regression model was used to assess the p-value, and the regression model was adjusted by age. Conclusion Optical parametric measurement is a noninvasive diagnostic and assessment tool that might help in the actual measurement of intraocular lens implantation in cataract surgery and may also provide supplementary information to the researcher domain.
Collapse
|