1
|
Sarangi S, Sharma S, Nahak SK, Panda AK. Association of CACNA1C polymorphisms (rs1006737, rs4765905, rs2007044) with schizophrenia: A meta-analysis and trial sequential analysis. Schizophr Res 2024; 274:247-256. [PMID: 39378823 DOI: 10.1016/j.schres.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Schizophrenia is a complex neurological disorder characterized by significant impairment in the perception of reality and changes in behavior. Genetic and environmental factors influence the development of schizophrenia. CACNA1C, which encodes a subunit of a voltage-dependent calcium channel, has been associated with various neurological disorders, including schizophrenia. Several studies have been performed in different populations to explore the association of common genetic variants in the CACNA1C gene with susceptibility to the development of schizophrenia, but results remain contradictory. To draw a definitive conclusion on the association between CACNA1C polymorphisms and schizophrenia, we conducted a meta-analysis focusing on three commonly studied polymorphisms: rs1006737, rs4765905, and rs2007044. For the meta-analysis, a comprehensive literature search was performed using PubMed, Scopus, Science Direct and Google Scholar databases. Data was retrieved, and the meta-analysis was performed using CMA v4 software. The meta-analysis revealed a significant association between rs1006737 and rs2007044 and schizophrenia in the overall population, while no such association was found for rs4765905. Population-wise analysis suggested that all three polymorphisms were significantly associated with schizophrenia in the Asian population and that rs1006737 was significantly associated with schizophrenia in Europeans. We also performed a Trial Sequential Analysis (TSA), which supported our findings. Some report-based assay studies have suggested a role for these polymorphisms in schizophrenia, but further case-control studies are needed to confirm the association of rs4765905 and rs2007044 with the disorder.
Collapse
Affiliation(s)
- Surjyapratap Sarangi
- ImmGen EvSys Laboratory BT-113, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India; Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Saurav Sharma
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Suraj Kumar Nahak
- ImmGen EvSys Laboratory BT-113, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India
| | - Aditya K Panda
- ImmGen EvSys Laboratory BT-113, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India; Centre of Excellence on Bioprospecting of Ethno-pharmaceuticals of Southern Odisha (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India.
| |
Collapse
|
2
|
Kaur S, Vashistt J, Changotra H. Autophagy Gene BECN1 Intronic Variant rs9890617 Predisposes Individuals to Hepatitis B Virus Infection. Biochem Genet 2024; 62:3336-3349. [PMID: 38103127 DOI: 10.1007/s10528-023-10608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Beclin 1 protein encoded by the BECN1 gene plays a critical role in the autophagy pathway which is utilized by the Hepatitis B virus (HBV) for its replication. HBV is known for the subversion of the host's autophagy process for its multiplication. The aim of this study was to determine the role of BECN1 intronic variants in HBV susceptibility. Intronic region variant rs9890617 was analyzed using Human splicing finder v3.1 and was found to alter splicing signals. A total of 712 individuals (494 HBV infected and 218 healthy controls) were recruited in the study and genotyped by applying Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Statistical analysis revealed that the mutant allele T of rs9890617 was significantly associated with the overall disease risk in the allelic model (OR 1.41; 95%CI 1.00-1.99, p = 0.04). On stratifying the data based on the different stages of HBV infection, the mutant genotype showed a significant association with the chronic group in allelic (OR 1.62; 95%CI 1.11-2.39, p = 0.01), dominant (OR 1.64; 95%CI 1.07-2.52, p = 0.02), and co-dominant (OR 1.55; 95%CI 1.00-2.40, p = 0.04) models. Overall, this is the first study regarding beclin 1 variant rs9890617 and we found a significant association of the mutant T allele with the genetic predisposition to HBV infection.
Collapse
Affiliation(s)
- Sargeet Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India.
| |
Collapse
|
3
|
Mokhtar WA, Elsaid AM, Elrefaey AM, Saleh MM, Youssef MM. Association of PLCE1 (rs7922612) and COL4A3 (rs375290088) Genetic Variants with the Risk of Nephrotic Syndrome in Egyptian Pediatric Patients. Biochem Genet 2024:10.1007/s10528-024-10883-6. [PMID: 39028381 DOI: 10.1007/s10528-024-10883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
Nephrotic syndrome is one of the most prevalent pediatric kidney illnesses seen in pediatric nephrology clinics. Steroid resistance in children with nephrotic syndrome is a primary cause of renal failure and is characterized by nephrotic range proteinuria that does not respond to conventional steroid therapy. The current work was intended to investigate the possible role of the Phospholipase C epsilon 1 (rs7922612) and collagen4 alpha 3 (rs375290088) single nucleotide polymorphisms as risk factors for developing nephrotic syndrome among Egyptian children. The study was conducted on 100 children with nephrotic syndrome and 100 age- and sex-matched healthy individuals. Geno typing was performed by two methods of polymerase chain reaction for the analysis of PLCE1 (rs7922612) and COL4A3 (rs375290088) variants. We observed a higher percentage of the heterozygous and homozygous variant genotypes of PLCE1 (rs7922612) SNP in NS patients in comparison with the controls (P < 0.001 for both). The frequencies of the PLCE1 (rs7922612) variant showed a statistically significant elevated risk of NS using several genetic models, including the dominant (OR = 9.12), recessive (OR = 2.31), and allelic (OR = 1.62) models (P < 0.001 for each). In addition, the PLCE1 (rs7922612) genotypes and alleles frequencies did not differ significantly between SRNS compared to SSNS cases. Furthermore, there was no significant difference regarding COL4A3 (rs375290088) polymorphism, neither between the NS and control groups nor between SDNS and SRNS. PLCE1 (rs7922612) is considered an independent risk factor for nephrotic syndrome in Egyptian pediatrics.COL4A3 (rs375290088) polymorphism is not correlated to Egyptian NS patients.
Collapse
Affiliation(s)
- Wafaa A Mokhtar
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Mansoura, Mansoura, Egypt.
| | - Afaf M Elsaid
- Consultant of Biochemistry, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Ahmed M Elrefaey
- Department of Paediatrics, Faculty of Medicine, University of Mansoura, Mansoura, Egypt
| | - Marwan Mahmood Saleh
- Department of Medical Physics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
| | - Magdy M Youssef
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
4
|
Shu X, Liu Y, He F, Gong Y, Li J. A bibliometric and visualized analysis of the pathogenesis of cataracts from 1999 to 2023. Heliyon 2024; 10:e26044. [PMID: 38390089 PMCID: PMC10881887 DOI: 10.1016/j.heliyon.2024.e26044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Research on the pathogenesis of cataracts is ongoing and the number of publications on this topic is increasing annually. This study offers an overview of the research status, popular topics, and scholarly tendencies in the field of cataract pathogenesis over recent decades,which helps to guide future research directions, and optimize resource allocation. In the present study, we performed a bibliometric analysis of cataract pathogenesis. Publications from January 1, 1999, to December 20, 2023, were collected from the Web of Science Core Collection (WoSCC), and the extracted data were quantified and analyzed. We analyzed and presented the data using Microsoft Excel, VOSviewer, CiteSpace, and Python. In all, 4006 articles were evaluated based on various characteristics, including publication year, authors, countries, institutions, journals, citations, and keywords. This study utilized VOSviewer to conduct visualized analysis, including co-authorship, co-citation, co-occurrence, and network visualization. The CiteSpace software was used to identify keywords with significant bursts of activity. The number of annual global publications climbed from 76 to 277 between 1999 and 2023, a 264.47% rise. Experimental Eye Research published the most manuscripts (178 publications), whereas Investigative Ophthalmology & Visual Science received the most citations (6675 citations). The most influential and productive country, institution, and author were the United States (1244 publications, 54,456 citations), University of California system (136 publications, 5401 citations), and Yao Ke (49 publications, 838 citations), respectively. The top 100 ranked keywords are divided into four clusters through co-occurrence analysis: (1) secondary cataracts, (2) oxidative stress, (3) gene mutations and protein abnormalities, and (4) alteration of biological processes in lens epithelial cells. Further discussions on the four subtopics outline the research topics and trends. In conclusion, the specific mechanism of cataract formation remains a popular topic for future research and should be explored in greater depth.
Collapse
Affiliation(s)
- Xinjie Shu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yingying Liu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Fanfan He
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yu Gong
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Jiawen Li
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| |
Collapse
|
5
|
Asim M, Saif-Ur Rehman M, Hassan FU, Awan FS. Genetic variants of CSN1S1, CSN2, CSN3, and BLG genes and their association with dairy production traits in Sahiwal cattle and Nili-Ravi buffaloes. Anim Biotechnol 2023; 34:2951-2962. [PMID: 36165734 DOI: 10.1080/10495398.2022.2126365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Milk protein genes are associated with milk yield and composition in dairy animals. The present study aimed to identify milk protein genes (CSN1S1, CSN2, CSN3, and BLG) genetic variants and their association with milk yield in Sahiwal cattle and Nili-Ravi buffaloes. One hundred animals from each species were selected to collect blood samples and milk production records. Primers were designed for these milk protein genes for PCR amplification. Sequencing of resultant PCR products revealed a higher number of SNPs (13 vs. 7, 5 vs. 1, and 6 vs. 2) in Sahiwal as compared to Nili-Ravi animals in CSN1S1, CSN2, and CSN3 genes, respectively. However, a single SNP was observed in BLG gene of both species. Association analysis revealed that one SNP in BLG gene of Nili-Ravi was associated (p < 0.05) with 305-day milk yield. Two SNPs at CSN1S1 gene in Sahiwal were associated with dry-period. Similarly, one SNP at CSN1S1 and two SNPs at CSN3 gene showed significant association (p < 0.05) with average calving-interval in Sahiwal while two SNPs in CSN1S1 gene were associated (p < 0.05) with this trait in Nili-Ravi. These SNPs could be helpful as candidate variants for marker-assisted selection in cattle and buffaloes for improvement of lactation performance.
Collapse
Affiliation(s)
- Muhammad Asim
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | | | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Faisal Saeed Awan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Lima-Filho RAS, Benedet AL, De Bastiani MA, Povala G, Cozachenco D, Ferreira ST, De Felice FG, Rosa-Neto P, Zimmer ER, Lourenco MV. Association of the fibronectin type III domain-containing protein 5 rs1746661 single nucleotide polymorphism with reduced brain glucose metabolism in elderly humans. Brain Commun 2023; 5:fcad216. [PMID: 37601408 PMCID: PMC10438215 DOI: 10.1093/braincomms/fcad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023] Open
Abstract
Fibronectin type III domain-containing protein 5 (FNDC5) and its derived hormone, irisin, have been associated with metabolic control in humans, with described FNDC5 single nucleotide polymorphisms being linked to obesity and metabolic syndrome. Decreased brain FNDC5/irisin has been reported in subjects with dementia due to Alzheimer's disease. Since impaired brain glucose metabolism develops in ageing and is prominent in Alzheimer's disease, here, we examined associations of a single nucleotide polymorphism in the FNDC5 gene (rs1746661) with brain glucose metabolism and amyloid-β deposition in a cohort of 240 cognitively unimpaired and 485 cognitively impaired elderly individuals from the Alzheimer's Disease Neuroimaging Initiative. In cognitively unimpaired elderly individuals harbouring the FNDC5 rs1746661(T) allele, we observed a regional reduction in low glucose metabolism in memory-linked brain regions and increased brain amyloid-β PET load. No differences in cognition or levels of cerebrospinal fluid amyloid-β42, phosphorylated tau and total tau were observed between FNDC5 rs1746661(T) allele carriers and non-carriers. Our results indicate that a genetic variant of FNDC5 is associated with low brain glucose metabolism in elderly individuals and suggest that FNDC5 may participate in the regulation of brain metabolism in brain regions vulnerable to Alzheimer's disease pathophysiology. Understanding the associations between genetic variants in metabolism-linked genes and metabolic brain signatures may contribute to elucidating genetic modulators of brain metabolism in humans.
Collapse
Affiliation(s)
- Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 413 45, Sweden
| | - Marco Antônio De Bastiani
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Guilherme Povala
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ 22281-100, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ 22281-100, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences & Department of Psychiatry, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health University Institute, Departments of Neurology and Neurosurgery, Psychiatry, and Pharmacology, McGill University, Montreal, QC H4H 1R3, Canada
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | | |
Collapse
|
7
|
Kavian Z, Sargazi S, Majidpour M, Sarhadi M, Saravani R, Shahraki M, Mirinejad S, Heidari Nia M, Piri M. Association of SLC11A1 polymorphisms with anthropometric and biochemical parameters describing Type 2 Diabetes Mellitus. Sci Rep 2023; 13:6195. [PMID: 37062790 PMCID: PMC10106459 DOI: 10.1038/s41598-023-33239-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Diabetes, a leading cause of death globally, has different types, with Type 2 Diabetes Mellitus (T2DM) being the most prevalent one. It has been established that variations in the SLC11A1 gene impact risk of developing infectious, inflammatory, and endocrine disorders. This study is aimed to investigate the association between the SLC11A1 gene polymorphisms (rs3731864 G/A, rs3731865 C/G, and rs17235416 + TGTG/- TGTG) and anthropometric and biochemical parameters describing T2DM. Eight hundred participants (400 in each case and control group) were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification-refractory mutation system-PCR (ARMS-PCR) methods. Lipid profile, fasting blood sugar (FBS), hemoglobin A1c level, and anthropometric indices were also recorded for each subject. Findings revealed that SLC11A1-rs3731864 G/A, -rs17235416 (+ TGTG/- TGTG) were associated with T2DM susceptibility, providing protection against the disease. In contrast, SLC11A1-rs3731865 G/C conferred an increased risk of T2DM. We also noticed a significant association between SLC11A1-rs3731864 G/A and triglyceride levels in patients with T2DM. In silico evaluations demonstrated that the SLC11A2 and ATP7A proteins also interact directly with the SLC11A1 protein in Homo sapiens. In addition, allelic substitutions for both intronic variants disrupt or create binding sites for splicing factors and serve a functional effect. Overall, our findings highlighted the role of SLC11A1 gene variations might have positive (rs3731865 G/C) or negative (rs3731864 G/A and rs17235416 + TGTG/- TGTG) associations with a predisposition to T2DM.
Collapse
Affiliation(s)
- Zahra Kavian
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansour Shahraki
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
- Adolescent Health Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maryam Piri
- Diabetes Center, Bu-Ali Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
8
|
Govender S, Nayak NR, Nandlal L, Naicker T. Gene polymorphisms within regions of complement component C1q in HIV associated preeclampsia. Eur J Obstet Gynecol Reprod Biol 2023; 282:133-139. [PMID: 36716536 DOI: 10.1016/j.ejogrb.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE This study investigates the association of C1q gene (rs292001 and rs294183) polymorphisms in HIV infected and uninfected preeclamptic women of African ancestry. MATERIALS AND METHODS The study population consisted of 325 pregnant women of African ancestry grouped into 145 normotensive pregnant women (72 HIV uninfected normotensive, 73 HIV infected normotensive) and 180 preeclamptic pregnant women (103 HIV uninfected preeclamptics, 77 HIV infected preeclamptics). Preeclamptic pregnant women were further sub-grouped into 79 early-onset preeclampsia (EOPE) (40 HIV uninfected EOPE, 39 HIV infected EOPE) and 101 late-onset preeclampsia (LOPE) (63 HIV uninfected LOPE, 38 HIV infected LOPE). Genotyping of complement C1q gene polymorphisms (rs292001 and rs294183) was detected using a TaqMan® SNP Genotyping assay from purified DNA. RESULTS No significant differences in allelic and genotype frequencies of rs292001 and rs294183 between preeclamptic and normotensive women were observed. Likewise, there were no significant differences in allelic and genotype frequencies between HIV infected normotensive vs HIV infected preeclampsia and HIV uninfected normotensive vs HIV uninfected preeclampsia for both SNPs. However, the odds ratio of preeclamptic women having the GA genotype was 1:2. CONCLUSION We demonstrate that SNPs of the C1q gene (rs292001 and rs294183) are not associated with the pathogenesis of PE development in women of African ancestry. The role ofC1qrs292001 heterozygous GA is highlighted (with and without HIV infection) may affect susceptibility to PE development. Notably, this dysregulation may affect C1q translation and protein output thus influencing the downstream role of the complement system and functional immunology in HIV infection comorbid with PE.
Collapse
Affiliation(s)
- Sumeshree Govender
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Nihar R Nayak
- Department of Obstetrics and Gynaecology, School of Medicine, University of Missouri, Kansas City, United States
| | - Louansha Nandlal
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
9
|
Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DWC, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res 2023; 92:101112. [PMID: 36055924 DOI: 10.1016/j.preteyeres.2022.101112] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
The crystalline lens is a transparent and refractive biconvex structure formed by lens epithelial cells (LECs) and lens fibers. Lens opacity, also known as cataracts, is the leading cause of blindness in the world. LECs are the principal cells of lens throughout human life, exhibiting different physiological properties and functions. During the embryonic stage, LECs proliferate and differentiate into lens fibers, which form the crystalline lens. Genetics and environment are vital factors that influence normal lens development. During maturation, LECs help maintain lens homeostasis through material transport, synthesis and metabolism as well as mitosis and proliferation. If disturbed, this will result in loss of lens transparency. After cataract surgery, the repair potential of LECs is activated and the structure and transparency of the regenerative tissue depends on postoperative microenvironment. This review summarizes recent research advances on the role of LECs in lens development, homeostasis, and regeneration, with a particular focus on the role of cholesterol synthesis (eg., lanosterol synthase) in lens development and homeostasis maintenance, and how the regenerative potential of LECs can be harnessed to develop surgical strategies and improve the outcomes of cataract surgery (Fig. 1). These new insights suggest that LECs are a major determinant of the physiological and pathological state of the lens. Further studies on their molecular biology will offer possibility to explore new approaches for cataract prevention and treatment.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Shan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Lang Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.
| |
Collapse
|
10
|
Relationship between the Occurrence of Genetic Variants of Single Nucleotide Polymorphism in microRNA Processing Genes and the Risk of Developing Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10123124. [PMID: 36551880 PMCID: PMC9776367 DOI: 10.3390/biomedicines10123124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS), which leads to disturbances in the conduction of nerve impulses, cognitive impairment, sensory and motor disturbances, as well as depressive symptoms. MS remains an incurable disease with a difficult diagnosis and unclear etiology. The aim of the analysis was to identify SNPs that may potentially be associated with an increased risk of developing MS. Blood samples were obtained from patients with MS (194 subjects) and age-matched healthy controls (188 subjects). The polymorphic variant frequencies of rs197412 T>C in GEMIN3, rs7813 G>A in GEMIN4, rs1106042 G>A in HIWI, rs10719 A>C in DROSHA, rs3742330 A>G in DICER1, rs11077 T>G in XPO5, rs14035 C>T in RAN, rs636832 G>A in AGO1 were determined in DNA using real-time PCR TaqMan® SNP Genotyping Assay. Our findings indicate that the GG AGO1 rs636832 and AA GEMIN4 rs7813 genotypes were associated with an increased risk of MS. Although our findings provide a clearer understanding of the pathogenesis of MS, further investigations are needed to better understand their potential for the evaluation of other miRNA processing genes believed to be associated with MS etiology.
Collapse
|
11
|
A hypothesis-driven study to comprehensively investigate the association between genetic polymorphisms in EPHX2 gene and cardiovascular diseases: Findings from the UK Biobank. Gene X 2022; 822:146340. [PMID: 35183688 DOI: 10.1016/j.gene.2022.146340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Epoxyeicosatrienoic acids (EETs) are protective factors against cardiovascular diseases (CVDs) because of their vasodilatory, cholesterol-lowering, and anti-inflammatory effects. Soluble epoxide hydrolase (sEH), encoded by the EPHX2 gene, degrades EETs into less biologically active metabolites. EPHX2 is highly polymorphic, and genetic polymorphisms in EPHX2 have been linked to various types of CVDs, such as coronary heart disease, essential hypertension, and atrial fibrillation recurrence. METHODS Based on a priori hypothesis that EPHX2 genetic polymorphisms play an important role in the pathogenesis of CVDs, we comprehensively investigated the associations between 210 genetic polymorphisms in the EPHX2 gene and an array of 118 diseases in the circulatory system using a large sample from the UK Biobank (N = 307,516). The diseases in electronic health records were mapped to the phecode system, which was more representative of independent phenotypes. Survival analyses were employed to examine the effects of EPHX2 variants on CVD incidence, and a phenome-wide association study was conducted to study the impact of EPHX2 polymorphisms on 62 traits, including blood pressure, blood lipid levels, and inflammatory indicators. RESULTS A novel association between the intronic variant rs116932590 and the phenotype "aneurysm and dissection of heart" was identified. In addition, the rs149467044 and rs200286838 variants showed nominal evidence of association with arterial aneurysm and cerebrovascular disease, respectively. Furthermore, the variant rs751141, which was linked with a lower hydrolase activity of sEH, was significantly associated with metabolic traits, including blood levels of triglycerides, creatinine, and urate. CONCLUSIONS Multiple novel associations observed in the present study highlight the important role of EPHX2 genetic variation in the pathogenesis of CVDs.
Collapse
|
12
|
Kwon YJ, Park DH, Choi JE, Lee D, Hong KW, Lee JW. Identification of the interactions between specific genetic polymorphisms and nutrient intake associated with general and abdominal obesity in middle-aged adults. Clin Nutr 2022; 41:543-551. [PMID: 35030529 DOI: 10.1016/j.clnu.2021.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Comprehensive understanding of gene-diet interactions is necessary to establish proper dietary guidelines to prevent and manage general and abdominal obesity. We investigated the role of genetic variants and their interactions with general and abdominal obesity-associated nutrients using a largescale genome-wide association study of Korean adults. METHODS A total of 50,808 participants from a Korean genome and epidemiology study were included. Dietary intake was assessed using a food frequency questionnaire. Obesity was defined as a body mass index ≥25 kg/m2. Abdominal obesity (AO) was defined as waist circumference ≥90 cm and 80 cm in males and females, respectively. Dietary nutrient intake was classified based on Korean Dietary Reference Intakes (DRIs). Odds ratios and 95% confidence intervals were calculated after adjusting for age, sex, exercise, smoking, alcohol drinking, total energy consumption, PC1, and PC2. RESULTS Among the individuals consuming fat (%) above DRI, carriers of Ca binding protein 39 (CAB39)- rs6722579 minor allele (A) have a higher risk of AO than those not carrying the SNP (odds ration [OR] = 3.73, p-value = 2.05e-07; interaction p-value = 1.80e-07). Among the individuals consuming vitamin C above DRI, carriers of carboxypeptidase Q (CPQ)- rs59465035 minor allele (T) have a lower risk of AO than those without that SNP (OR = 0.89, p-value = 1.44e-08; interaction p-value = 9.50e-06). The genetic association with obesity was stronger among individuals with a genetic variant rs4130113 near GHR gene region in those consume folate above DRI and with a genetic variant rs5760920 near CRYBB2 gene region in those consume vitamin B2 above DRI. CONCLUSION Our study results suggested that interactions of specific polymorphisms at loci and certain nutrients may influence obesity and abdominal obesity.
Collapse
Affiliation(s)
- Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si 16995, Gyeonggi-do, Republic of Korea
| | - Da Hyun Park
- Theragen Bio Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Ja-Eun Choi
- Theragen Bio Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Dasom Lee
- Theragen Bio Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Kyung-Won Hong
- Theragen Bio Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea.
| | - Ji-Won Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Republic of Korea.
| |
Collapse
|
13
|
Yang L, Min X, Zhu Y, Hu Y, Yang M, Yu H, Li J, Xiong X. Polymorphisms of SORBS1 Gene and Their Correlation with Milk Fat Traits of Cattleyak. Animals (Basel) 2021; 11:ani11123461. [PMID: 34944239 PMCID: PMC8697865 DOI: 10.3390/ani11123461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Increasing milk fat rate has a good effect on the milk quality of cattleyak. SNPs can help us find potential molecular markers for the milk fat traits of cattleyak, and they can be screened according to molecular markers when they are young. It provides a reference for cultivating high milk fat cattle population in the future. The results of this study suggest that the SORBS1 gene polymorphism is closely related to the milk fat traits of cattleyak, which could be used as a candidate genetic marker for milk fat trait selection in cattleyak. This study provides a new molecular marker and theoretical basis for screening the milk fat traits of cattleyak. It has a certain reference value for the research and improvement of milk quality. Abstract This study aimed to find the SNPs in the SORBS1 gene of cattleyak, analyze the relationship between its polymorphisms and the milk fat traits, and find potential molecular markers for the milk fat traits of cattleyak. The polymorphism of the SORBS1 gene in 350 cattleyak from Hongyuan County (Sichuan, China) were detected by PCR and DNA sequencing, and the correlation between these SNPs and the milk production traits of cattleyak was analyzed. The results showed that there were nine SNPs in the CDS and their adjacent non-coding regions of the SORBS1 gene, and all SNPs have three genotypes. The correlation analysis found that the genotypes with superior milk fat traits in the other eight alleles were homozygous genotypes with a high genotype frequency except the g.96284 G > A (c.3090 G > A) (p < 0.05). However, at locus g.96284 G > A, the milk fat percentage, monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) of the GA genotype were significantly higher than that of GG and AA genotypes (p < 0.05). Among these SNPs, three SNPs (g.6256 C > T (c.298 C > T), g.24791 A > G (c.706 A > G) and g.29121 A > G (c.979 A > G)) caused the amino acids change. The genotypes of the three SNPs consist of three haplotypes and four diplotypes. The amino acid mutation degree of diplotype H1–H1 (CCAAAA) was the highest, and its milk fat percentage, MUFAs, PUFAs and SFAs were also the highest (p < 0.05). Taken together, we found nine SNPs in the SORBS1 gene that are closely related to the milk fat traits of cattleyak. Moreover, the mutation of amino acids caused by SNPs had positive effects on the milk fat traits of cattleyak. H1-H1 is the dominant diplotype which significantly related to the milk fat traits of cattleyak. This study provides a new molecular marker and theoretical basis for screening the milk fat traits of cattleyak.
Collapse
Affiliation(s)
- Luyu Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (L.Y.); (X.M.); (Y.Z.); (Y.H.); (J.L.)
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (M.Y.); (H.Y.)
| | - Xingyu Min
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (L.Y.); (X.M.); (Y.Z.); (Y.H.); (J.L.)
| | - Yanjin Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (L.Y.); (X.M.); (Y.Z.); (Y.H.); (J.L.)
| | - Yulei Hu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (L.Y.); (X.M.); (Y.Z.); (Y.H.); (J.L.)
| | - Manzhen Yang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (M.Y.); (H.Y.)
| | - Hailing Yu
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (M.Y.); (H.Y.)
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (L.Y.); (X.M.); (Y.Z.); (Y.H.); (J.L.)
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (M.Y.); (H.Y.)
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (L.Y.); (X.M.); (Y.Z.); (Y.H.); (J.L.)
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China; (M.Y.); (H.Y.)
- Correspondence:
| |
Collapse
|