1
|
Wang CT, Chang YH, Tan GSW, Lee SY, Chan RVP, Wu WC, Tsai ASH. Optical Coherence Tomography and Optical Coherence Tomography Angiography in Pediatric Retinal Diseases. Diagnostics (Basel) 2023; 13:diagnostics13081461. [PMID: 37189561 DOI: 10.3390/diagnostics13081461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Indirect ophthalmoscopy and handheld retinal imaging are the most common and traditional modalities for the evaluation and documentation of the pediatric fundus, especially for pre-verbal children. Optical coherence tomography (OCT) allows for in vivo visualization that resembles histology, and optical coherence tomography angiography (OCTA) allows for non-invasive depth-resolved imaging of the retinal vasculature. Both OCT and OCTA were extensively used and studied in adults, but not in children. The advent of prototype handheld OCT and OCTA have allowed for detailed imaging in younger infants and even neonates in the neonatal care intensive unit with retinopathy of prematurity (ROP). In this review, we discuss the use of OCTA and OCTA in various pediatric retinal diseases, including ROP, familial exudative vitreoretinopathy (FEVR), Coats disease and other less common diseases. For example, handheld portable OCT was shown to detect subclinical macular edema and incomplete foveal development in ROP, as well as subretinal exudation and fibrosis in Coats disease. Some challenges in the pediatric age group include the lack of a normative database and the difficulty in image registration for longitudinal comparison. We believe that technological improvements in the use of OCT and OCTA will improve our understanding and care of pediatric retina patients in the future.
Collapse
Affiliation(s)
- Chung-Ting Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333, Taiwan
| | - Yin-Hsi Chang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333, Taiwan
| | - Gavin S W Tan
- Singapore National Eye Centre, Singapore, Singapore 168751, Singapore
- DUKE NUS Medical School, Singapore 169857, Singapore
| | - Shu Yen Lee
- Singapore National Eye Centre, Singapore, Singapore 168751, Singapore
- DUKE NUS Medical School, Singapore 169857, Singapore
| | - R V Paul Chan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Illinois Eye and Ear Infirmary, Chicago, IL 60612, USA
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan
| | - Andrew S H Tsai
- Singapore National Eye Centre, Singapore, Singapore 168751, Singapore
- DUKE NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
2
|
Miracco C, Toti P, Gelmi MC, Aversa S, Baldino G, Galluzzi P, De Francesco S, Petrelli F, Sorrentino E, Belmonte G, Galimberti D, Bracco S, Hadjistilianou T. Retinoblastoma Is Characterized by a Cold, CD8+ Cell Poor, PD-L1- Microenvironment, Which Turns Into Hot, CD8+ Cell Rich, PD-L1+ After Chemotherapy. Invest Ophthalmol Vis Sci 2021; 62:6. [PMID: 33538768 PMCID: PMC7862737 DOI: 10.1167/iovs.62.2.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose To investigate the impact of chemotherapy (CHT) on human retinoblastoma (RB) tumor microenvironment (TME). Cases and Methods Ninety-four RBs were studied, including 44 primary RBs treated by upfront surgery (Group 1) and 50 primary RBs enucleated after CHT (CHT), either intra-arterial (IAC; Group 2, 33 cases) or systemic (S-CHT; Group 3, 17 cases). Conventional and multiplexed immunohistochemistry were performed to make quantitative comparisons among the three groups, for the following parameters: tumor-infiltrating inflammatory cells (TI-ICs); programmed cell death protein 1 (PD-1) positive TI-ICs; Ki67 proliferation index; gliosis; PD-1 ligand (PD-L1) protein expression; vessel number. We also correlated these TME factors with the presence of histological high-risk factors (HHRF+) and RB anaplasia grade (AG). Results After CHT, a decrease in both RB burden and Ki67 positivity was observed. In parallel, most subsets of TI-ICs, PD-1+ TI-ICs, gliosis, and PD-L1 protein expression significantly increased (P < 0.001, P = 0.02, P < 0.001, respectively). Vessel number did not significantly vary. Age, HHRFs+ and AG were significantly different between primary and chemoreduced RBs (P < 0.001, P = 0.006, P = 0.001, respectively) and were correlated with most TME factors. Conclusions CHT modulates host antitumor immunity by reorienting the RB TME from anergic into an active, CD8+, PD-L1+ hot state. Furthermore, some clinicopathological characteristics of RB correlate with several factors of TME. Our study adds data in favor of the possibility of a new therapeutic scenario in human RB.
Collapse
Affiliation(s)
- Clelia Miracco
- Department of Medicine, Surgery and Neuroscience, Pathological Anatomy Section, University Hospital of Siena, Siena, Italy
| | - Paolo Toti
- Department of Medicine, Surgery and Neuroscience, Pathological Anatomy Section, University Hospital of Siena, Siena, Italy
| | - Maria Chiara Gelmi
- Department of Medicine, Surgery and Neuroscience, Ophthalmology Unit, University Hospital of Siena, Siena, Italy
| | - Sara Aversa
- Department of Medicine, Surgery and Neuroscience, Pathological Anatomy Section, University Hospital of Siena, Siena, Italy
| | - Gennaro Baldino
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Paolo Galluzzi
- Department of Medicine, Surgery and Neuroscience, Unit of Neuroimaging and Neurointervention, University Hospital of Siena, Siena, Italy
| | - Sonia De Francesco
- Department of Medicine, Surgery and Neuroscience, Ophthalmology Unit, University Hospital of Siena, Siena, Italy
| | - Federica Petrelli
- Department of Medicine, Surgery and Neuroscience, Pathological Anatomy Section, University Hospital of Siena, Siena, Italy
| | - Ester Sorrentino
- Department of Medicine, Surgery and Neuroscience, Pathological Anatomy Section, University Hospital of Siena, Siena, Italy
| | - Giuseppe Belmonte
- Department of Medicine, Surgery and Neuroscience, Pathological Anatomy Section, University Hospital of Siena, Siena, Italy
| | - Daniela Galimberti
- Department of Maternal, Newborn and Child Health, Unit of Pediatrics, University Hospital of Siena, Siena, Italy
| | - Sandra Bracco
- Department of Medicine, Surgery and Neuroscience, Unit of Neuroimaging and Neurointervention, University Hospital of Siena, Siena, Italy
| | - Theodora Hadjistilianou
- Department of Medicine, Surgery and Neuroscience, Ophthalmology Unit, University Hospital of Siena, Siena, Italy
| |
Collapse
|
3
|
Lu H, Zhang Z, Lu Y, Xiu W, Cui J. LncRNA NEAT1 Acts as an miR-148b-3p Sponge to Regulate ROCK1 Inhibition of Retinoblastoma Growth. Cancer Manag Res 2021; 13:5587-5597. [PMID: 34285579 PMCID: PMC8285126 DOI: 10.2147/cmar.s271326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/15/2020] [Indexed: 01/26/2023] Open
Abstract
Background It is reported that long non-coding RNA nuclear paraspeckle assembly transcript 1 (LncRNA NEAT1) is involved in the occurrence and development of various cancers. However, the detailed biological function and mechanism of LncRNA NEAT1 in retinoblastoma are still unclear. So we will explore the biological function and possible mechanism of LncRNA NEAT1 in retinoblastoma. Materials and Methods Quantitative real-time PCR (qRT-PCR) was used to detect LncRNA NEAT1 in retinoblastoma tissues and cell lines. Cell counting kit 8, Transwell and flow cytometry were applied to explore cell proliferation, invasion and apoptosis. The target miRNAs (miR) of LncRNA NEAT1 and miR and downstream target genes were predicted using Starbase3.0 software and confirmed by double luciferase reporting test and RNA binding protein immunoprecipitation (RIP). Western Blot was applied to explore ROCK1 in cells, and tumor allogeneic experiment was applied to study the role of LncRNA NEAT1 on tumor growth. Results It was found that LncRNA NEAT1 was up-regulated in retinoblastoma tissues, cells and serum, and the prognosis of patients with high expression of LNC RNA NEAT 1 was poor. Functional analysis showed that knocking down LncRNA NEAT1 could weaken proliferation and invasion, and accelerate apoptosis. Tumor allogeneic experiment showed that sh-NEAT1 injection can inhibit tumor growth. In addition, LncRNA NEAT1 inhibited proliferation and invasion, and promoted apoptosis through miR-148b-3p/ROCK1 axis. Conclusion LncRNA NEAT1 can mediate miR-148b-3p/ROCK1 axis to weaken the proliferation and invasion of retinoblastoma.
Collapse
Affiliation(s)
- Hang Lu
- Research Center of Ophthalmology, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang Province, People's Republic of China
| | - Zhenjun Zhang
- Ophthalmology Department, Beiman Hongpeng Hospital of Qiqihar, Qiqihar, Heilongjiang Province, People's Republic of China
| | - Yao Lu
- International Education College, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, People's Republic of China
| | - Weiwei Xiu
- Research Center of Ophthalmology, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang Province, People's Republic of China
| | - Jinglin Cui
- Research Center of Ophthalmology, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang Province, People's Republic of China
| |
Collapse
|