1
|
Kampeerapappun P, Desclaux S, Rattanapinyopituk K, Srisuk T, Hemstapat R. Natural cellulose fibers derived from Dracaena angolensis (Welw. ex Carrière) Byng & Christenh. demonstrate potential as a non-absorbable surgical suture biomaterial. Sci Rep 2025; 15:1291. [PMID: 39779811 PMCID: PMC11711317 DOI: 10.1038/s41598-025-85886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025] Open
Abstract
Sutures from natural and synthetic materials are utilized to close wounds, stop bleeding, reduce pain and infection, repair cutaneous wounds, minimize scarring, and promote optimal wound healing. We used mechanical and chemical methods to extract cellulose fibers from cylindrical snake grass (Dracaena angolensis) (Welw. ex Carrière) Byng & Christenh. Following the extraction process, the fibers increased in cellulose and water content, while hemicellulose and lignin decreased. The extracted fibers exhibited good mechanical properties, with weight losses of 7.4% in deionized water (DI) and 13.7% in phosphate-buffered saline (PBS). In comparison, the commercial braided silk sutures (Mersilk braided silk non-absorbable suture) used as a control showed no weight loss. However, the morphology of the fibers remained consistent throughout the 35-day immersion period in either DI or PBS. In an in vivo biocompatibility test, a semi-quantitative analysis of host tissue reactions indicated no significant difference (p > 0.05) between the two suturing materials across all criteria, confirming the comparable biocompatibility of cylindrical snake grass fibers to that of commercial silk sutures. These findings demonstrate the promising potential of natural cellulose fibers derived from cylindrical snake grass as an alternative source of a non-absorbable surgical suture biomaterial, attributed to their outstanding mechanical properties and biocompatibility.
Collapse
Affiliation(s)
- Piyaporn Kampeerapappun
- Faculty of Textile Industries, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand
| | - Scarlett Desclaux
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kasem Rattanapinyopituk
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tanyalak Srisuk
- Faculty of Textile Industries, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand
| | - Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Monroy Caltzonci D, Rasu Chettiar AD, Ibarra VC, Marasamy L, Loredo-Tovías M, Acosta-Torres LS, Manisekaran R. Antimicrobial and Cytotoxic Effect of Positively Charged Nanosilver-Coated Silk Sutures. ACS OMEGA 2024; 9:17636-17645. [PMID: 38645349 PMCID: PMC11025086 DOI: 10.1021/acsomega.4c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/16/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
Sutures are a crucial component of surgical procedures, serving to close and stabilize wound margins to promote healing. However, microbial contamination of sutures can increase the risk of surgical site infections (SSI) due to colonization by pathogens. This study aimed to tackle SSI by synthesizing positively charged silver nanoparticles (P-AgNPs) and using them to produce antimicrobial sutures. The P-AgNPs were reduced and stabilized using polyethylenimine (PEI), a cationic branched polymer. The physiochemical characteristics of P-AgNPs were confirmed from the surface plasmon resonance (SPR) peak at 419 nm, spherical morphology with a particle size range of 8-10 nm, PEI functional groups on NPs, a hydrodynamic diameter of 12.3 ± 2.4 nm, and a zeta potential of 31.3 ± 6 mV. Subsequently, the surfaces of silk sutures were impregnated with P-AgNPs at different time intervals (24, 48, and 96 h) using an ex situ method. Scanning electron microscopy (SEM) and tensile strength studies were conducted to determine the coating and durability of the NP-coated sutures. The NPs were quantified on sutures using inductively coupled plasma optical emission spectrophotometry (ICP-OES), which was in the range of 1-5 μg. Primarily, antimicrobial activity was studied using three microorganisms (Candida albicans, Streptococcus mutans, and Staphylococcus aureus) for both P-AgNPs and suture-coated P-AgNPs using the agar diffusion method. The results showed that only the NPs and NP-coated sutures exhibited enhanced antimicrobial effects against bacteria and fungi. Finally, the cytotoxicity of the sutures was investigated using stem cells from the apical papilla (SCAPs) for 24 h, which exhibited more than 75% cell viability. Overall, the results indicate that NP-coated sutures can potentially be used as antimicrobial sutures to diminish or inhibit SSI in postoperative or general surgery patients.
Collapse
Affiliation(s)
- Diego
Antonio Monroy Caltzonci
- Interdisciplinary
Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela
Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero,
Comunidad de los Tepetates, 37689 León, Mexico
| | - Aruna-Devi Rasu Chettiar
- Facultad
de Química, Materiales-Energía, Universidad Autónoma de Querétaro, 76010 Querétaro, Mexico
| | - Verónica Campos Ibarra
- Interdisciplinary
Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela
Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero,
Comunidad de los Tepetates, 37689 León, Mexico
| | - Latha Marasamy
- Facultad
de Química, Materiales-Energía, Universidad Autónoma de Querétaro, 76010 Querétaro, Mexico
| | - Marcos Loredo-Tovías
- Área
de Ciencias de la Tierra, Facultad de Ingeniería,UASLP, Av. Manuel Nava no.8, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Laura Susana Acosta-Torres
- Interdisciplinary
Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela
Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero,
Comunidad de los Tepetates, 37689 León, Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary
Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela
Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero,
Comunidad de los Tepetates, 37689 León, Mexico
| |
Collapse
|
3
|
Fazekas LA, Szabo B, Szegeczki V, Filler C, Varga A, Godo ZA, Toth G, Reglodi D, Juhasz T, Nemeth N. Impact Assessment of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and Hemostatic Sponge on Vascular Anastomosis Regeneration in Rats. Int J Mol Sci 2023; 24:16695. [PMID: 38069018 PMCID: PMC10706260 DOI: 10.3390/ijms242316695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The proper regeneration of vessel anastomoses in microvascular surgery is crucial for surgical safety. Pituitary adenylate cyclase-activating polypeptide (PACAP) can aid healing by decreasing inflammation, apoptosis and oxidative stress. In addition to hematological and hemorheological tests, we examined the biomechanical and histological features of vascular anastomoses with or without PACAP addition and/or using a hemostatic sponge (HS). End-to-end anastomoses were established on the right femoral arteries of rats. On the 21st postoperative day, femoral arteries were surgically removed for evaluation of tensile strength and for histological and molecular biological examination. Effects of PACAP were also investigated in tissue culture in vitro to avoid the effects of PACAP degrading enzymes. Surgical trauma and PACAP absorption altered laboratory parameters; most notably, the erythrocyte deformability decreased. Arterial wall thickness showed a reduction in the presence of HS, which was compensated by PACAP in both the tunica media and adventitia in vivo. The administration of PACAP elevated these parameters in vitro. In conclusion, the application of the neuropeptide augmented elastin expression while HS reduced it, but no significant alterations were detected in collagen type I expression. Elasticity and tensile strength increased in the PACAP group, while it decreased in the HS decreased. Their combined use was beneficial for vascular regeneration.
Collapse
Affiliation(s)
- Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Vince Szegeczki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Csaba Filler
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Zoltan Attila Godo
- Department of Information Technology, Faculty of Informatics, University of Debrecen, Kassai ut 26, H-4028 Debrecen, Hungary;
| | - Gabor Toth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dom ter 8, H-6720 Szeged, Hungary;
| | - Dora Reglodi
- HUN-REN-PTE PACAP Research Group, Department of Anatomy, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary;
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| |
Collapse
|
4
|
Aravindan V, Kumar SP, Murugan P S, Krishnan M, Sneha A. A Rare Case of Cemento-Ossifying Fibroma: A Case Report. Cureus 2023; 15:e38685. [PMID: 37292559 PMCID: PMC10244260 DOI: 10.7759/cureus.38685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 06/10/2023] Open
Abstract
Benign fibro-osseous lesions are a group of pathological conditions characterized by the replacement of normal bone with cellular fibrous connective tissue that undergoes mineralization. The most common types of benign fibro-osseous lesions include fibrous dysplasia, ossifying fibroma, and osseous dysplasia. However, diagnosing these lesions can be challenging due to their overlapping clinical, radiological, and histological features, which can cause a diagnostic dilemma for surgeons, radiologists, and pathologists. One rare type of benign fibro-osseous lesion is the cemento-ossifying fibroma (COF), which is a definitive form of a benign fibro-osseous tumor that affects the craniofacial region, particularly the jaws (70%). Here, we present a case of COF in a 61-year-old female patient in the maxillary anterior region. Due to a clear distinction between the lesion and healthy bone, the lesion was treated with conservative surgical excision followed by curettage and primary closure. However, differential diagnosis of COF can be highly challenging for clinicians due to its overlapping features with other fibro-osseous lesions like Paget's disease and fibrous dysplasia. Ossifying fibroma and fibrous dysplasia often present a histopathological, clinical, and radiological overlap. The post-operative follow-up after eight months was unpredictable, with a radiological picture showing the increased thickness of the frontal bone, parietal bone, and maxilla with obliteration of marrow spaces, alteration of the trabecular pattern with a cotton wool/ground glass appearance, and reduced maxillary sinus space. Proper evaluation and diagnosis of fibro-osseous lesions are necessary before arriving at a final conclusion. Cemento-ossifying fibroma in the maxillofacial skeleton is uncommon, and after eight months, the recurrence rate is rare. This case highlights the importance of considering COF as a differential diagnosis for fibro-osseous lesions in the maxillofacial region and the necessity for proper evaluation and diagnosis to determine the appropriate treatment plan and prognosis. In summary, the diagnosis of benign fibro-osseous lesions can be challenging due to their overlapping features, but early diagnosis and proper evaluation are essential for successful treatment outcomes. COF is a rare type of benign fibro-osseous lesion where other fibro-osseous lesions in the maxillofacial region should be considered as a differential diagnosis, and the necessary steps should be taken to confirm the diagnosis before arriving at a final conclusion.
Collapse
Affiliation(s)
- Vedha Aravindan
- Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Santhosh P Kumar
- Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Senthil Murugan P
- Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Murugesan Krishnan
- Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Alladi Sneha
- Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|