1
|
Abstract
Cancer is an uncontrolled growth of normal cells due to unchecked regulatory mechanisms working inside the rapidly dividing cells. In this complex cancer disease treatment, various strategies are utilized to get rid of cancer cells effectively. The different methods combine approaches used to treat cancer, such as radiotherapy, surgery, and chemotherapy. Chemotherapy is among the most effective ways, along with radiotherapy and surgical removal of cancer tissue. Effective chemotherapy based on modification of conventional drugs along with various molecular therapeutic targets, which involve different inhibitors that work in a specific manner in inhibiting particular events activated in cancer cells-the understanding of molecular signaling pathways holds key in the development of targeted therapeutics. After the fundamental signaling pathway studies, a single signaling pathway targeting approach or multiple targeting could display remarkable results in cancer therapeutics. The signal approach includes the signal pathway target. However, a double targeted pathway could effectively aid in inhibiting cell growth or metastasis either due to triggering natural suicidal mechanism (apoptosis) activation. The particular environment of cells regulates cell growth and differentiation. Various proteins in the extracellular matrix (ECM) regulate the process of cancer initiation or progression. The ECM collagens, elastins proteins, fibronectins, and laminins might reduce the effectiveness of treatment therapy, reflecting them as an essential target. Any dysregulation in the composition of ECM reflects the regulatory ineffectiveness in a particular area. These have an association with poor prognosis, cell propagation, and metastasis, along drug resistance.Regulation in physiological processes associated with developmental process and maintaining the homeostasis. The pathogenesis of cancer might be connected to dysregulation in cell death programs, including autophagy, necrosis, and the most desirable cell death mechanism called apoptosis: programmed cell death, the highly regulatory mechanism of natural cell death involved in tissue development. The apoptosis involves characteristic feather of cell death which includes specific morphological change along with biochemical alteration. It includes tightly regulated irreversible events, i.e., phosphatidylserine externalization and DNA fragmentation, mainly via the intrinsic and extrinsic pathways. Targeting apoptosis in the development of therapeutics could be the ultimate process in treating cancer via chemotherapy. During apoptosis, cell death occurs without causing much damage or inflammation in neighboring cells. Various pro-apoptosis and anti-apoptosis proteins involved in the regulation of apoptosis could act as a remarkable target. The apoptosis inactivation is the critical dysregulatory process in the majority of cancer types. There is an increase in research development regarding apoptosis-targeted therapeutics. A understanding of apoptotic signaling pathways, a fundamental knowledge, aids in developing particular inhibitors for anti-apoptotic and activator of pro-apoptotic proteins.In both apoptosis pathways (extrinsic and intrinsic), pro-apoptotic and anti-apoptotic proteins act as potential regulators in cell division and growth. The pro-apoptotic proteins Bax trigger the activation of the intrinsic pathway, an excellent target for developing therapeutics, and are currently in clinical trials. Similarly, the inhibitor of the anti-apoptotic proteins is also on track in the drug development process. The considerable importance of apoptosis-based anticancer drugs is also due to improving the drug sensitivity via reversing the resistive mechanisms in cancer cells. The dysregulatory or inactivated apoptosis mechanism involve Bcl-2 family proteins which include both pro-apoptotic members downregulation and anti-apoptotic upregulation, various inhibitors of apoptosis as inhibitory proteins (IAPs), cell cycle dysregulation, dysregulatory repair system, cell progression pathway activation of NF-κB, tumor suppressor (p53) regulation, and death receptors (DRs) of the extrinsic pathway.
Collapse
Affiliation(s)
- Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
| | - Abdah Md Akim
- Department of Biomedical Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | | |
Collapse
|
2
|
Chaudhry GES, Thirukanthan CS, NurIslamiah KM, Sung YY, Sifzizul TSM, Effendy AWM. Characterization and cytotoxicity of low-molecular-weight chitosan and chito-oligosaccharides derived from tilapia fish scales. J Adv Pharm Technol Res 2021; 12:373-377. [PMID: 34820312 PMCID: PMC8588928 DOI: 10.4103/japtr.japtr_117_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/26/2021] [Accepted: 07/19/2021] [Indexed: 11/04/2022] Open
Abstract
The present study evaluated the physicochemical characterization and cytotoxicity activity of chitosan and chito-oligosaccharides (COSs). The extraction of chitosan and COSs was executed by chemical hydrolysis. The physicochemical characterization and deacetylation (DA) value were determined using an FTIR. The molecular weight was determined by using the Mark-Houwink equation. The physical parameters such as solubility, water-binding capacity (WBC), and fat-binding capacity (FBC) were determination as per equation (i), (ii), and (iii) respectively. The cytotoxic activities of chitosan and COS against MCF-7, HepG2, HeLa-6, and 3T3 were performed by MTS assay. The COS induced enhance cytotoxicity with IC50 0.87 and2.21 mg/ml against MCF-7 and HepG2 respectively. However, COSs seem to be more sensitive toward the cell lines with the relative potential of MCF-7 > HepG2 > HeLa. Hence, the results showed promising future perspectives of chitosan and COS to develop biodegradable, antibacterial, cytotoxic naturally derived polysaccharides for cancer drug delivery and smart wound dressings.
Collapse
Affiliation(s)
| | - C. S. Thirukanthan
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Malaysia
| | | | - Y. Y. Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Malaysia
| | - T. S. M. Sifzizul
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Malaysia
| | - A. W. M. Effendy
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala, Terengganu, Malaysia
| |
Collapse
|
3
|
Chaudhry GES, Akim A, Naveed Zafar M, Safdar N, Sung YY, Muhammad TST. Understanding Hyaluronan Receptor (CD44) Interaction, HA-CD44 Activated Potential Targets in Cancer Therapeutics. Adv Pharm Bull 2021; 11:426-438. [PMID: 34513617 PMCID: PMC8421618 DOI: 10.34172/apb.2021.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a complex mechanism involving a series of cellular events. The glycoproteins such as hyaluronan (HA) are a significant element of extracellular matrix (ECM), involve in the onset of cancer developmental process. The pivotal roles of HA in cancer progression depend on dysregulated expression in various cancer. HA, also gain attention due to consideration as a primary ligand of CD44 receptor. The CD44, complex transmembrane receptor protein, due to alternative splicing in the transcription process, various CD44 isoforms predominantly exist. The overexpression of distinct CD44 isoforms (CD44v) standard (CD44s) depends on the tumour type and stage. The receptor proteins, CD44 engage in a variety of biological processes, including cell growth, apoptosis, migration, and angiogenesis. HA-CD44 interaction trigger survival pathways that result in cell proliferation, invasion ultimately complex metastasis. The interaction and binding of ligand-receptor HA-CD44 regulate the downstream cytoskeleton pathways involve in cell survival or cell death. Thus, targeting HA, CD44 (variant and standard) isoform, and HA-CD44 binding consider as an attractive and useful approach towards cancer therapeutics. The use of various inhibitors of HA, hyaluronidases (HYALs), and utilizing targeted Nano-delivery of anticancer agents and antibodies against CD44, peptides gives promising results in vitro and in vivo. However, they are in clinical trials with favourable and unfavourable outcomes, which reflects the need for various modifications in targeting agents and a better understanding of potential targets in tumour progression pathways.
Collapse
Affiliation(s)
- Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | - Abdah Akim
- Department of Biomedical Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia
| | | | - Naila Safdar
- Department of Environmental Sciences, Fatima Jinnah University, Rawalpindi, Pakistan
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | | |
Collapse
|
4
|
Chaudhry GES, Islamiah M, Zafar MN, Bakar K, Aziz NA, Saidin J, Sung YY, Tengku Muhammad TS. Induction of Apoptosis by Acanthaster planci sp., and Diadema setosum sp., Fractions in Human Cervical Cancer Cell Line, HeLa. Asian Pac J Cancer Prev 2021; 22:1365-1373. [PMID: 34048163 PMCID: PMC8408404 DOI: 10.31557/apjcp.2021.22.5.1365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/04/2021] [Indexed: 11/25/2022] Open
Abstract
Cancer is an uncontrolled multiplication of cells. The desire efficacy and severe toxicity of current anticancer drugs urge exploring and investigating a better alternative to existing chemotherapeutics. Natural products of marine origin are excellent sources of potential new drugs of enhanced biological activities. OBJECTIVES Thus, the cytotoxic effects along with investigating the mode of cell death exerted by fractions, AP-9, AP-THR, DS-8 and DS-9 fraction of Acanthaster planci, Diadema setosum sp., on the human cervical cancer cell line, HeLa. METHODS The cytotoxicity of fractions has determined by using an MTS assay. The early and late apoptosis was studied by using the High content Screening (HCS) instrument. RESULTS The four fractions produced effective cytotoxicity effects with IC50 values at 72hr of less than 20 μg/ml in the order of AP-9 > DS-9 > APTHR-9 > DS-8. The fraction s exhibited cytotoxicity via mediating apoptotic mode of cell death. The early apoptosis by exposure of phosphatidylserine to the outer leaflet of the plasma membrane and late apoptosis due to the presence of green stain (DNA fragmentation) in treated cells. CONCLUSION The potent bioactive compounds might be responsible for inducing apoptosis in cancer cells and, thus, the potential to be a successful candidate for exploring upcoming chemotherapeutic drugs.
Collapse
Affiliation(s)
- Gul-e-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
| | - Murni Islamiah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
| | | | - Kamariah Bakar
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
| | - Nur Asniza Aziz
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
| | - Jasnizat Saidin
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
| | | |
Collapse
|
5
|
Zhao C, Zhang Z, Hu X, Zhang L, Liu Y, Wang Y, Guo Y, Zhang T, Li W, Li B. Hyaluronic Acid Correlates With Bone Metastasis and Predicts Poor Prognosis in Small-Cell Lung Cancer Patients. Front Endocrinol (Lausanne) 2021; 12:785192. [PMID: 35154001 PMCID: PMC8826575 DOI: 10.3389/fendo.2021.785192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Hyaluronan (HA) is one of the essential elements of the extracellular matrix (ECM), involved in the onset of metastasis in various tumors. The interaction and binding of the ligand-receptor HA/cluster of differentiation-44 (CD44) regulate the physical and biochemical properties of the ECM, which correlates with an increased propensity toward metastasis and poor survival outcome. Our study aimed to explore HA for predicting metastasis and survival rate in patients with small-cell lung cancer (SCLC). MATERIALS AND METHODS This prospective cohort study recruited 72 patients with SCLC. Plasma HA and CD44 levels were assayed by enzyme-linked immunosorbent assay (ELISA) for 72 cases before initial systematic treatment (baseline samples), and plasma HA was detected via after-2-cycle-chemotherapy (A-2-C-CT) in 48 samples. Logistic regression analysis and the Cox proportional risk model were used to determine the independent predictors of distant metastasis and survival rate of patients. RESULTS Baseline plasma HA was notably associated with bone metastasis (BM) [OR (95% CI = 1.015 (1.006-1.024), p = 0.001]. Multivariate logistic regression analysis showed that baseline plasma HA was chosen as an independent predictor of BM. Either baseline HA or CD44 or both were associated with BM. Dynamic alteration of HA was notably associated with A-2-C-CT clinical efficacy. Multivariate Cox regression analysis in forward likelihood ratio showed that A-2-C-CT HA was an independent predictor of progression-free survival (PFS) and overall survival (OS). CONCLUSIONS HA appears to be used as an independent predictive factor for BM, and the dynamic detection of HA can predict prognosis in SCLC patients. The mechanism of the HA/CD44 axis in BM of SCLC deserves further exploration.
Collapse
Affiliation(s)
- Cong Zhao
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhiyun Zhang
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Yanxia Liu
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ying Wang
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yi Guo
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tongmei Zhang
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weiying Li, ; Tongmei Zhang, ; Baolan Li,
| | - Weiying Li
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
- *Correspondence: Weiying Li, ; Tongmei Zhang, ; Baolan Li,
| | - Baolan Li
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
- *Correspondence: Weiying Li, ; Tongmei Zhang, ; Baolan Li,
| |
Collapse
|
6
|
Chaudhry GES, Rahman NH, Sevakumaran V, Ahmad A, Mohamad H, Zafar MN, Sung YY, Tengku Muhammad TS. Induction of cytotoxicity by Bruguiera gymnorrhiza in human breast carcinoma (MCF-7) cell line via activation of the intrinsic pathway. J Adv Pharm Technol Res 2020; 11:233-237. [PMID: 33425710 PMCID: PMC7784945 DOI: 10.4103/japtr.japtr_81_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Accepted: 09/05/2020] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is among the frequently occurring cancer worldwide. The foremost underline aim of this study was to determine the growth inhibitory effect along with mechanistic study of a Bruguiera gymnorrhiza extract on MCF-7. The cytotoxicity activity was determined by using the MTS assay. Butanol extract exhibited the maximum cytotoxicity activity against the MCF-7 cells with IC50 of 3.39 μg/mL, followed by diethyl ether and methanol extract (IC50 at 16.22 μg/mL and 37.15 μg/mL, respectively) at 72 h. The DeadEndTM Colorimetric Apoptosis Detection System confirmed the induction of apoptosis (via DNA fragmentation) in MCF-7 cells. Both butanol and diethyl ether extracts of B. gymnorrhiza significantly increase the caspase-3 level. However, the diethyl ether extract induced higher caspase-9 levels compared to caspase-8, suggesting that the intrinsic pathway was the major route in the process of apoptosis. Thin-layer chromatography profiling demonstrated the presence of phenolic, terpene, and alkaloid compounds in crude methanol, diethyl ether, and butanol extracts. The phytochemicals present in the extracts of B. gymnorrhiza might have the potential to be a future therapeutic agent against breast cancer.
Collapse
Affiliation(s)
- Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Nurul Huda Rahman
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Vigneswari Sevakumaran
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Aziz Ahmad
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Habsah Mohamad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | | | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | | |
Collapse
|