1
|
Hua Y, Jiang P, Dai C, Li M. Extracellular vesicle autoantibodies. J Autoimmun 2024; 149:103322. [PMID: 39341173 DOI: 10.1016/j.jaut.2024.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
Autoantibodies are immunoglobulin proteins produced by autoreactive B cells responding to self-antigens. Extracellular vesicles (EVs) are membranous structures released by almost all types of cells and extensively distributed in various biological fluids. Studies have indicated that EVs loaded with self-antigens not only play important roles in antigen presentation and autoantibody production but can also form functional immune complexes with autoantibodies (termed EV autoantibodies). While numerous papers have summarized the production and function of pathogenic autoantibodies in diseases, especially autoimmune diseases, reviews on EV autoantibodies are rare. In this review, we outline the existing knowledge about EVs, autoantibodies, and EV antigens, highlighting the formation of EV autoantibodies and their functions in autoimmune diseases and cancers. In conclusion, EV autoantibodies may be involved in the occurrence of disease(s) and also serve as potential non-invasive markers that could help in the diagnosis and/or prognosis of disease. Additional studies designed to define in more detail the molecular characteristics of EV autoantibodies and their contribution to disease are recommended.
Collapse
Affiliation(s)
- Yan Hua
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China; Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, China
| | - Panpan Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China
| | - Chunyang Dai
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China; Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China; Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
2
|
Montero-Calle A, Garranzo-Asensio M, Moreno-Casbas MT, Campuzano S, Barderas R. Autoantibodies in cancer: a systematic review of their clinical role in the most prevalent cancers. Front Immunol 2024; 15:1455602. [PMID: 39234247 PMCID: PMC11371560 DOI: 10.3389/fimmu.2024.1455602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Although blood autoantibodies were initially associated with autoimmune diseases, multiple evidence have been accumulated showing their presence in many types of cancer. This has opened their use in clinics, since cancer autoantibodies might be useful for early detection, prognosis, and monitoring of cancer patients. In this review, we discuss the different techniques available for their discovery and validation. Additionally, we discuss here in detail those autoantibody panels verified in at least two different reports that should be more likely to be specific of each of the four most incident cancers. We also report the recent developed kits for breast and lung cancer detection mostly based on autoantibodies and the identification of novel therapeutic targets because of the screening of the cancer humoral immune response. Finally, we discuss unsolved issues that still need to be addressed for the implementation of cancer autoantibodies in clinical routine for cancer diagnosis, prognosis, and/or monitoring.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Maria Teresa Moreno-Casbas
- Investén-isciii, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network for Frailty and Healthy Ageing (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Bryushkova EA, Mushenkova NV, Turchaninova MA, Lukyanov DK, Chudakov DM, Serebrovskaya EO. B cell clonality in cancer. Semin Immunol 2024; 72:101874. [PMID: 38508089 DOI: 10.1016/j.smim.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 03/22/2024]
Abstract
Carcinogenesis in the process of long-term co-evolution of tumor cells and immune environment essentially becomes possible due to incorrect decisions made, remembered, and reproduced by the immune system at the level of clonal populations of antigen-specific T- and B-lymphocytes. Tumor-immunity interaction determines the nature of such errors and, consequently, delineates the possible ways of successful immunotherapeutic intervention. It is generally recognized that tumor-infiltrating B cells (TIL-B) can play both pro-tumor and anti-tumor roles. However, the exact mechanisms that determine the contribution of clonal B cell lineages with different specificities and functions remain largely unclear. This is due to the variability of cancer types, the molecular heterogeneity of tumor cells, and, to a large extent, the individual pattern of each immune response. Further progress requires detailed investigation of the functional properties and phenotypes of clonally heterogeneous B cells in relation to their antigenic specificities, which determine the functionality of both effector B lymphocytes and immunoglobulins produced in the tumor environment. Based on a real understanding of the role of clonal antigen-specific populations of B lymphocytes in the tumor microenvironment, we need to learn how to develop new methods of targeted immunotherapy, as well as adapt existing treatment options to the specific needs of different patients and patient subgroups. In this review, we will cover B cells functional diversity and their multifaceted roles in the tumor environment.
Collapse
Affiliation(s)
- E A Bryushkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Department of Molecular Biology, Lomonosov Moscow State University, Moscow, Russia
| | - N V Mushenkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Unicorn Capital Partners, Moscow, Russia
| | - M A Turchaninova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - D K Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - D M Chudakov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - E O Serebrovskaya
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Current position: Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
4
|
Zhang P, Wu Z, Zhou T, Yang D, Mu Q, Zhang W, Yu L, Zhang S, Hu Y, Mu J, Jia W. Autoantibody repertoire profiling in tissue and blood identifies colorectal cancer-specific biomarkers. Cancer Sci 2024; 115:83-93. [PMID: 37985391 PMCID: PMC10823280 DOI: 10.1111/cas.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Autoantibodies (AAbs) in the blood of colorectal cancer (CRC) patients have been evaluated for tumor detection. However, it remains uncertain whether these AAbs are specific to tumor-associated antigens. In this study, we explored the IgG and IgM autoantibody repertoires in both the in situ tissue microenvironment and peripheral blood as potential tumor-specific biomarkers. We applied high-density protein arrays to profile AAbs in the tumor-infiltrating lymphocyte supernatants and corresponding serum from four patients with CRC, as well as in the serum of three noncancer controls. Our findings revealed that there were more reactive IgM AAbs than IgG in both the cell supernatant and corresponding serum, with a difference of approximately 3-5 times. Immunoglobulin G was predominant in the serum, while IgM was more abundant in the cell supernatant. We identified a range of AAbs present in both the supernatant and the corresponding serum, numbering between 432 and 780, with an average of 53.3% shared. Only 4.7% (n = 23) and 0.2% (n = 2) of reactive antigens for IgG and IgM AAbs, respectively, were specific to CRC. Ultimately, we compiled a list of 19 IgG AAb targets as potential tumor-specific AAb candidates. Autoantibodies against one of the top candidates, p15INK4b-related sequence/regulation of nuclear pre-mRNA domain-containing protein 1A (RPRD1A), were significantly elevated in 53 CRC patients compared to 119 controls (p < 0.0001). The project revealed that tissue-derived IgG AAbs, rather than IgM, are the primary source of tumor-specific AAbs in peripheral blood. It also identified potential tumor-specific AAbs that could be applied for noninvasive screening of CRC.
Collapse
Affiliation(s)
- Pei‐Fen Zhang
- Affiliated Tumor Hospital of Xinjiang Medical UniversityÜrümqiChina
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ziyi Wu
- Department of Radiation OncologyFujian Medical University Cancer Hospital, Fujian Cancer HospitalFuzhouChina
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Da‐Wei Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Quan‐Kai Mu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wen‐Bin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Long Yu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shao‐Dan Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ye‐Zhu Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthRockvilleMarylandUSA
| | - Wei‐Hua Jia
- Affiliated Tumor Hospital of Xinjiang Medical UniversityÜrümqiChina
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
5
|
Cao Y, Wo M, Xu C, Fei X, Jin J, Shan Z. An AMPK agonist suppresses the progress of colorectal cancer by regulating the polarization of TAM to M1 through inhibition of HIF-1α and mTOR signal pathway. J Cancer Res Ther 2023; 19:1560-1567. [PMID: 38156922 DOI: 10.4103/jcrt.jcrt_2670_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/17/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study aimed to evaluate the impact of an adenosine monophosphate-activated protein kinase (AMPK) agonist, metformin (MET), on the antitumor effects of macrophages and to determine the underlying mechanism involved in the process. MATERIALS AND METHODS M0 macrophages were derived from phorbol-12-myristate-13-acetate-stimulated THP-1 cells. RESULTS The levels of tumor necrosis factor-alpha (TNF-α) and human leukocyte antigen-DR (HLA-DR) were decreased in macrophages incubated with HCT116 cells, whereas those of arginase-1 (Arg-1), CD163, and CD206 were elevated; these effects were reversed by MET. The transfection of small interfering (si) RNA abrogated the influence of MET on the expression of the M1/M2 macrophage biomarkers. MET significantly suppressed the proliferation and migration abilities of HCT116 cells incubated with M0 macrophages; these actions were reversed by siRNA transfection against AMPK. The hypoxia-inducible factor 1-alpha (HIF-1α), phosphorylated protein kinase B (p-AKT), and phosphorylated mammalian target of rapamycin (p-mTOR) levels were reduced by the introduction of MET and promoted by siRNA transfection against AMPK. In addition, the levels of HIF-1α, p-AKT, and p-mTOR suppressed by MET were markedly increased following the transfection of siRNA against AMPK. CONCLUSION These findings indicate that MET can repress the progression of colorectal cancer by transforming tumor-associated macrophages to the M1phenotype via inhibition of the HIF-1α and mTOR signaling pathways.
Collapse
Affiliation(s)
- Yuanyuan Cao
- Department of Laboratory Medicine, Hangzhou Cancer Hospital, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Shangcheng, China
| | - Mingyi Wo
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang Center for Clinical Laboratory, Gongshu, China
| | - Chan Xu
- Department of Laboratory Medicine, Affiliated Third Hospital of Zhejiang Traditional Chinese Medicine University, Xihu, Hangzhou, Zhejiang, China
| | - Xianming Fei
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang Center for Clinical Laboratory, Gongshu, China
| | - Juan Jin
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang Center for Clinical Laboratory, Gongshu, China
| | - Zhiming Shan
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang Center for Clinical Laboratory, Gongshu, China
| |
Collapse
|
6
|
McCaw TR, Lofftus SY, Crompton JG. Clonal redemption of B cells in cancer. Front Immunol 2023; 14:1277597. [PMID: 37965337 PMCID: PMC10640973 DOI: 10.3389/fimmu.2023.1277597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Potentially self-reactive B cells constitute a large portion of the peripheral B cell repertoire in both mice and humans. Maintenance of autoreactive B cell populations could conceivably be detrimental to the host but their conservation throughout evolution suggests performance of a critical and beneficial immune function. We discuss herein how the process of clonal redemption may provide insight to preservation of an autoreactive B cell pool in the context of infection and autoimmunity. Clonal redemption refers to additional recombination or hypermutation events decreasing affinity for self-antigen, while increasing affinity for foreign antigens. We then review findings in murine models and human patients to consider whether clonal redemption may be able to provide tumor antigen-specific B cells and how this may or may not predispose patients to autoimmunity.
Collapse
Affiliation(s)
| | | | - Joseph G. Crompton
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Zhang Y, Zhang Q, Zheng Y, Chen J, Liu N, Liu K, Song W. Soluble DPP4 can act as a diagnostic biomarker in Hashimoto's thyroiditis with thyroid papillary carcinoma. J Cancer Res Ther 2023; 19:1048-1054. [PMID: 37675735 DOI: 10.4103/jcrt.jcrt_919_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Hashimoto's thyroiditis (HT) is an independent risk factor for papillary thyroid carcinoma (PTC), but the underlying mechanism remains unknown. The incidence of PTC in patients with HT is significantly elevated, and the presence of both HT and PTC contributes to a higher rate of misdiagnosis. Materials and Methods Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on the thyroid nodule gene chip dataset from GEO Datasets. Serum and clinical data from 191 patients with thyroid nodules at the affiliated hospital were collected for analysis. Experimental techniques, including real-time quantitative PCR, ELISA, immunohistochemistry (IHC), and enzyme activity detection, were used to measure the level of dipeptidyl peptidase 4 (DPP4) in thyroid nodule tissues and serum. Results Thyroid nodules in patients with HT and PTC exhibit high levels of DPP4, along with elevated concentrations of soluble DPP4 in the serum. These findings demonstrate the potential predictive value of soluble DPP4 for PTC diagnosis. Conclusions The concentration and enzymatic activity of soluble DPP4 in serum can serve as diagnostic biomarkers for patients with HT-associated PTC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology and Metabolism, Guiqian International General Hospital, Guiyang, Guizhou, China
| | - Qiao Zhang
- Department of Endocrinology and Metabolism, Guiqian International General Hospital, Guiyang, Guizhou, China
| | - Yingying Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jiaxi Chen
- School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Nian Liu
- School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Kai Liu
- Department of Immunology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wengang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital; Department of Immunology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
8
|
Zhu J, Luo J, Ma Y. Screening of serum exosome markers for colorectal cancer based on Boruta and multi-cluster feature selection algorithms. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-023-00348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Brindl N, Boekhoff H, Bauer AS, Gaida MM, Dang HT, Kaiser J, Hoheisel JD, Felix K. Use of Autoreactive Antibodies in Blood of Patients with Pancreatic Intraductal Papillary Mucinous Neoplasms (IPMN) for Grade Distinction and Detection of Malignancy. Cancers (Basel) 2022; 14:cancers14153562. [PMID: 35892825 PMCID: PMC9332220 DOI: 10.3390/cancers14153562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: A reliable non-invasive distinction between low- and high-risk pancreatic intraductal papillary mucinous neoplasms (IPMN) is needed to effectively detect IPMN with malignant potential. This would improve preventative care and reduce the risk of developing pancreatic cancer and overtreatment. The present study aimed at exploring the presence of autoreactive antibodies in the blood of patients with IPMN of various grades of dysplasia. (2) Methods: A single-center cohort was studied composed of 378 serum samples from patients with low-grade IPMN (n = 91), high-grade IPMN (n = 66), IPMN with associated invasive cancer (n = 30), pancreatic ductal adenocarcinoma (PDAC) stages T1 (n = 24) and T2 (n = 113), and healthy controls (n = 54). A 249 full-length recombinant human protein microarray was used for profiling the serum samples. (3) Results: 14 proteins were identified as potential biomarkers for grade distinction in IPMN, yielding high specificity but mediocre sensitivity. (4) Conclusions: The identified autoantibodies are potential biomarkers that may assist in the detection of malignancy in IPMN patients.
Collapse
Affiliation(s)
- Niall Brindl
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
- Correspondence: (N.B.); (K.F.); Tel.: +49-163-638-1860 (N.B.)
| | - Henning Boekhoff
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
| | - Andrea S. Bauer
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
| | - Matthias M. Gaida
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- TRON, Translational Oncology at the University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hien T. Dang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA;
| | - Jörg Kaiser
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Jörg D. Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.B.); (A.S.B.); (J.D.H.)
| | - Klaus Felix
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Correspondence: (N.B.); (K.F.); Tel.: +49-163-638-1860 (N.B.)
| |
Collapse
|