1
|
Murugan P, Manickam R, Rajamanickam T, Muthu S, Dinesan C, Appunu K, Murali A. Dosimetric impact of arc simulation angular resolution in single-isocentre multi-target stereotactic radiosurgery. Radiol Phys Technol 2025:10.1007/s12194-024-00876-w. [PMID: 39812945 DOI: 10.1007/s12194-024-00876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
This study evaluates the dosimetric impact of arc simulation angular resolution in VMAT-based Single Isocentre Multiple Target (SIMT) SRS, focusing on their dependence on target size, isocentre distance, number of arcs, and arc type. A phantom study analysed angular resolution (0.5°, 1°, 2°) effects on dosimetric accuracy for PTVs of 0.5 cm, 1 cm, and 2 cm at distances of 2.5 cm, 5 cm, and 7.5 cm from the isocentre using conformal arc and VMAT plans. Clinical validation involved 32 patients with 2-8 brain metastases, comparing plans recalculated at 1° and 2° resolutions. Dosimetric parameters included: Dnear-Min, Dnear-Max, Dmean, Dmedian, TVPIV, CIPaddick, GI, and Brain-GTV 12 Gy. For the 0.5 cm diameter target located at 7.5 cm distance from isocentre, phantom results showed TVPIV, Dmean, and GI deviations of 7.91%, 1.8%, and 0.85 for single-conformal arcs, which decreased to 4.84%, 1.3%, and 0.77 with 4-conformal arcs, and 3.4%, 0.96%, and 0.5 for 4-arc VMAT. Deviations varied based on target size, isocentre distance, number of arcs, and arc type. Clinical results mirrored the phantom study, with maximum TVPIV and GI deviations of 2.76% and 0.65 for the smallest target (0.6 cm) located at 7.5 cm distance for four-arc VMAT. Other dosimetric parameters showed minimal variations (< 1%). Correlation analysis revealed strong associations between dosimetric differences, target size, and distance (r = 0.6-0.78 for small targets). MANOVA identified TVPIV as the only significant parameter (p = 0.01). A 1° angular resolution significantly improves dosimetric accuracy for small, distally located targets in SIMT SRS.
Collapse
Affiliation(s)
- Perumal Murugan
- Department of Radiotherapy, Sri Shankara Cancer Hospital and Research Centre, 1st Cross, Shankarapuram, Basavanagui, Bengaluru, 560004, Karnataka, India
| | - Ravikumar Manickam
- Department of Radiotherapy, Sri Shankara Cancer Hospital and Research Centre, 1st Cross, Shankarapuram, Basavanagui, Bengaluru, 560004, Karnataka, India.
| | - Tamilarasan Rajamanickam
- Department of Radiotherapy, Sri Shankara Cancer Hospital and Research Centre, 1st Cross, Shankarapuram, Basavanagui, Bengaluru, 560004, Karnataka, India
| | - Sivakumar Muthu
- Department of Radiotherapy, Sri Shankara Cancer Hospital and Research Centre, 1st Cross, Shankarapuram, Basavanagui, Bengaluru, 560004, Karnataka, India
| | - C Dinesan
- Department of Radiotherapy, Sri Shankara Cancer Hospital and Research Centre, 1st Cross, Shankarapuram, Basavanagui, Bengaluru, 560004, Karnataka, India
| | - Karthik Appunu
- Department of Radiotherapy, Sri Shankara Cancer Hospital and Research Centre, 1st Cross, Shankarapuram, Basavanagui, Bengaluru, 560004, Karnataka, India
| | - Abishake Murali
- Department of Radiotherapy, Sri Shankara Cancer Hospital and Research Centre, 1st Cross, Shankarapuram, Basavanagui, Bengaluru, 560004, Karnataka, India
| |
Collapse
|
2
|
Nakano H, Shiinoki T, Tanabe S, Utsunomiya S, Kaidu M, Nishio T, Ishikawa H. Assessing tumor volumetric reduction with consideration for setup errors based on mathematical tumor model and microdosimetric kinetic model in single-isocenter VMAT for brain metastases. Phys Eng Sci Med 2024; 47:1385-1396. [PMID: 38884671 DOI: 10.1007/s13246-024-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
The volumetric reduction rate (VRR) was evaluated with consideration for six degrees-of-freedom (6DoF) patient setup errors based on a mathematical tumor model in single-isocenter volumetric modulated arc therapy (SI-VMAT) for brain metastases. Simulated gross tumor volumes (GTV) of 1.0 cm and dose distribution were created (27 Gy/3 fractions). The distance between the GTV center and isocenter (d) was set at 0-10 cm. The GTV was translated within 0-1.0 mm (Trans) and rotated within 0-1.0° (Rot) in the three axis directions using affine transformation. The tumor growth volume was calculated using a multicomponent mathematical model (MCTM), and lethal effects of irradiation and repair from damage during irradiation were calculated by a microdosimetric kinetic model (MKM) for non-small cell lung cancer (NSCLC) A549 and NCI-H460 (H460) cells. The VRRs were calculated 5 days after the end of irradiation using the physical dose to the GTV for varying d and 6DoF setup errors. The tolerance value of VRR, the GTV volume reduction rate, was set at 5%, based on the pre-irradiation GTV volume. With the exception of the only one A549 condition where (Trans, Rot) = (1.0 mm, 1.0°) was repeated for 3 fractions, all conditions met all the tolerance VRR values for A549 and H460 cells with varying d from 0 to 10 cm. Evaluation based on the mathematical tumor model suggested that if the 6DoF setup errors at each irradiation could be kept within 1.0 mm and 1.0°, there would be little effect on tumor volume regardless of the distance from the isocenter in SI-VMAT.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan.
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan.
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Yamaguchi University, Minamikogushi 1-1-1 Ube, Yamaguchi, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| |
Collapse
|
3
|
Mukwada G, Chamunyonga C, Rowshanfarzad P, Gill S, Ebert MA. Insights into the dosimetric and geometric characteristics of stereotactic radiosurgery for multiple brain metastases: A systematic review. PLoS One 2024; 19:e0307088. [PMID: 39121064 PMCID: PMC11315342 DOI: 10.1371/journal.pone.0307088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/30/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND GammaKnife (GK) and CyberKnife (CK) have been the mainstay stereotactic radiosurgery (SRS) solution for multiple brain metastases (MBM) for several years. Recent technological advancement has seen an increase in single-isocentre C-arm linac-based SRS. This systematic review focuses on dosimetric and geometric insights into contemporary MBM SRS and thereby establish if linac-based SRS has matured to match the mainstay SRS delivery systems. METHODS The PubMed, Web of Science and Scopus databases were interrogated which yielded 891 relevant articles that narrowed to 20 articles after removing duplicates and applying the inclusion and exclusion criteria. Primary studies which reported the use of SRS for treatment of MBM SRS and reported the technical aspects including dosimetry were included. The review was limited to English language publications from January 2015 to August 2023. Only full-length papers were included in the final analysis. Opinion papers, commentary pieces, letters to the editor, abstracts, conference proceedings and editorials were excluded. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. The reporting of conformity indices (CI) and gradient indices, V12Gy, monitor units and the impact of translational and rotational shifts were extracted and analysed. RESULTS The single-isocentre technique for MBM dominated recent SRS studies and the most studied delivery platforms were Varian. The C-arm linac-based SRS plan quality and normal brain tissue sparing was comparable to GK and CK and in some cases better. The most used nominal beam energy was 6FFF, and optimised couch and collimator angles could reduce mean normal brain dose by 11.3%. Reduction in volume of the healthy brain receiving a certain dose was dependent on the number and size of the metastases and the relative geometric location. GK and CK required 4.5-8.4 times treatment time compared with linac-based SRS. Rotational shifts caused larger changes in CI in C-arm linac-based single-isocentre SRS. CONCLUSION C-arm linac-based SRS produced comparable MBM plan quality and the delivery is notably shorter compared to GK and CK SRS.
Collapse
Affiliation(s)
- Godfrey Mukwada
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, Western Australia, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
| | - Crispen Chamunyonga
- School of Clinical Sciences, Discipline of Radiation Therapy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, Western Australia, Australia
| | - Suki Gill
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, Western Australia, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
| | - Martin A. Ebert
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, Western Australia, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, Western Australia, Australia
- School of Medicine and Population Health, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
May L, Barnes M, Hardcastle N, Hernandez V, Saez J, Rosenfeld A, Poder J. Multi-institutional investigation into the robustness of intra-cranial multi-target stereotactic radiosurgery plans to patient setup errors. Phys Med 2024; 124:103423. [PMID: 38970949 DOI: 10.1016/j.ejmp.2024.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024] Open
Abstract
PURPOSE This study aimed to analyse correlations between planning factors including plan geometry and plan complexity with robustness to patient setup errors. METHODS Multiple-target brain stereotactic radiosurgery (SRS) plans were obtained through the Trans-Tasman Radiation Oncology Group (TROG) international treatment planning challenge (2018). The challenge dataset consisted of five intra-cranial targets with a 20 Gy prescription. Setup error was simulated using an in-house tool. Dose to targets was assessed via dose covering 99 % (D99 %) of gross tumour volume (GTV) and 98 % of planning target volume (PTV). Dose to organs at risk was assessed using volume of normal brain receiving 12 Gy and maximum dose covering 0.03 cc of brainstem. Plan complexity was assessed via edge metric, modulation complexity score, mean multi-leaf collimator (MLC) gap, mean MLC speed and plan modulation. RESULTS Even for small (0.5 mm/°) errors, GTV D99 % was reduced by up to 20 %. The strongest correlation was found between lower complexity plans (larger mean MLC gap and lower edge metric) and higher robustness to setup error. Lower complexity plans had 1 %-20 % fewer targets/scenarios with GTV D99 % falling below the specified tolerance threshold. These complexity metrics correlated with 100 % isodose volume sphericity and dose conformity, though similar conformity was achievable with a range of complexities. CONCLUSIONS A higher level of importance should be directed towards plan complexity when considering plan robustness. It is recommended when planning multi-target SRS, larger MLC gaps and lower MLC aperture irregularity be considered during plan optimisation due to higher robustness should patient positioning errors occur.
Collapse
Affiliation(s)
- Lauren May
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia.
| | - Micah Barnes
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, VIC 3168, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, IISPV, Tarragona, Spain
| | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Spain
| | - Anatoly Rosenfeld
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia
| | - Joel Poder
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; St George Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; School of Physics, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
5
|
de Camargo AV, de Mattos MD, Kawasaki MK, Gomes DNS, Borges ABB, Vazquez VDL, Araujo RLC. Treatment of patients with multiple brain metastases by isolated radiosurgery: Toxicity and survival. World J Clin Oncol 2023; 14:400-408. [PMID: 37970107 PMCID: PMC10631349 DOI: 10.5306/wjco.v14.i10.400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Radiosurgery for multiple brain metastases has been more reported recently without using whole-brain radiotherapy. Nevertheless, the sparsity of the data still claims more information about toxicity and survival and their association with both dosimetric and geometric aspects of this treatment. AIM To assess the toxicity and survival outcome of radiosurgery in patients with multiple (four or more lesions) brain metastases. METHODS In a single institution, data were collected retrospectively from patients who underwent radiosurgery to treat brain metastases from diverse primary sites. Patients with 4-21 brain metastases were treated with a single fraction with a dose of 18 Gy or 20 Gy. The clinical variables collected were relevant to toxicity, survival, treatment response, planning, and dosimetric variables. The Spearman's rank correlation coefficients, Mann-Whitney test, Kruskal-Wallis test, and Log-rank test were used according to the type of variable and outcomes. RESULTS From August 2017 to February 2020, 55 patients were evaluated. Headache was the most common complaint (38.2%). The median overall survival (OS) for patients with karnofsky performance status (KPS) > 70 was 8.9 mo, and this was 3.6 mo for those with KPS ≤ 70 (P = 0.047). Patients with treated lesions had a median progression-free survival of 7.6 mo. There were no differences in OS (19.7 vs 9.5 mo) or progression-free survival (10.6 vs 6.3 mo) based on prior irradiation. There was no correlation found between reported toxicities and planning, dosimetric, and geometric variables, implying that no additional significant toxicity risks appear to be added to the treatment of multiple (four or more) lesions. CONCLUSION No associations were found between the evaluated toxicities and the planning dosimetric parameters, and no differences in survival rates were detected based on previous treatment status.
Collapse
Affiliation(s)
| | | | - Murilo Kenji Kawasaki
- Department of Radiotherapy, Barretos Cancer Hospital, São Paulo, Barretos 14784-400, Brazil
| | | | | | | | - Raphael L C Araujo
- Department of Surgery, Universidade Federal de São Paulo, São Paulo 04024-002, Brazil
- IEP, Barretos Cancer Hospital, São Paulo, Barretos 14784-400, Brazil
| |
Collapse
|
6
|
Hayashi N, Kurata S, Saito Y, Ogawa S, Yasui K. Simple quality assurance based on filtered back projection for geometrical/irradiation accuracy in single-isocenter multiple-target stereotactic radiotherapy. Radiol Phys Technol 2022; 15:409-416. [PMID: 36261754 DOI: 10.1007/s12194-022-00683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 10/24/2022]
Abstract
In single-isocenter multiple-target stereotactic radiotherapy (SIMT-SRT), it is difficult to evaluate both the geometrical accuracy and absorbed dose measurement when irradiating off-isocenter targets. This study aimed to develop a simple quality assurance (QA) method to evaluate off-isocenter irradiation position accuracy in SIMT-SRT and compare its feasibility with that of a commercial device. First, we created two types of inserts and metallic balls with a diameter of 5 mm to be inserted into a commercially available phantom (SIMT phantom). Second, we developed a dedicated analysis software using Python for the Winston-Lutz test (WLT). Third, an image processing software, including the filtered back-projection algorithm, was developed to analyze the images obtained using an electronic portal imaging device (EPID). Fourth, the feasibility of our method was evaluated by comparing it with the results of WLT using two commercially available phantoms: WL-QA and MultiMet-WL cubes. Notably, 92% of the results in one-dimensional deviations were within 0.26 mm (EPID pixel width). The correlation coefficients were 0.52, 0.92, and 0.96 in the left-right, superior-inferior, and anterior-posterior directions, respectively. In the WLT, a maximum two-dimensional deviation of 0.70 mm was detected in our method, while the deviation in the other method was within 0.5 mm. The advantage of our method is that it can evaluate the geometrical accuracy at any gantry angle during dynamic rotation irradiation using a filtered back-projection algorithm, even if the target is located off the isocenter. Our method can perform WLT at arbitrary positions and is suitable for the QA of dynamic rotation irradiation using an EPID.
Collapse
Affiliation(s)
- Naoki Hayashi
- School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan.
| | - Shun Kurata
- School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan.,Department of Radiology, Kindai University Hospital, Osakasayama, Osaka, Japan
| | - Yasunori Saito
- School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan.,Department of Radiology, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Shuta Ogawa
- Department of Radiology, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Keisuke Yasui
- School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
7
|
de Camargo AV, Cao M, da Silva DDCSA, de Araújo RLC. Evaluation of the correlation between dosimetric, geometric, and technical parameters of radiosurgery planning for multiple brain metastases. J Appl Clin Med Phys 2021; 22:83-92. [PMID: 34212482 PMCID: PMC8364278 DOI: 10.1002/acm2.13326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose To evaluate the correlation between dosimetric, geometric, and technical parameters for radiosurgery planning of multiple brain metastasis treatments treated with a linear accelerator with volumetric modulated arc therapy (VMAT) technique. Materials and methods Data were collected retrospectively from 55 patients who underwent radiosurgery in a single institution from August 2017 to February 2020. Patients presented 4–21 brain metastases were treated with a single fraction with doses between 18 and 20 Gy. Dosimetric variables were collected including V5Gy, V8Gy, V10Gy, V12Gy, V14Gy, conformity index (CI), heterogeneity index (HI), maximum dose (Dmax), and the CI_R50. Geometric variables including the number of lesions, target volumes, the smallest target volume, the largest target volume, and the distance between the isocenter and the most distant lesion (DIL) and technical variables such as the numbers of total arcs, noncoplanar arcs, and isocenters were collected for analysis. Results The number of lesions had a moderate positive correlation with V5Gy, V8Gy, V10Gy, V12Gy, V14Gy, HI, Dmax, and with the number of total arcs. The target volumes had a positive medium–high correlation with V5Gy, V8Gy, V10Gy, V12Gy, V14Gy, and moderate positive correlation with HI, Dmax, number of arcs and noncoplanar arcs. The CI and CI_R50 had a negative correlation with all volumes related to the target: the target volumes, the smallest, and the largest lesion. A positive correlation was observed between the distance of the isocenter and the most DIL with V5Gy, V8Gy, V10Gy, V12Gy, V14Gy, HI, Dmax, and the number of isocenters. Conclusion It was found that the number of lesions and the target volumes are good predictors of dosimetric indexes of plan evaluation and that the distance between the isocenter and the most DIL harms them.
Collapse
Affiliation(s)
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, CA, USA
| | | | - Raphael Leonardo Cunha de Araújo
- Barretos Cancer Hospital, Barretos, Brazil.,Universidade Federal de São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
8
|
Amaya D, Shinde A, Wohlers C, Wong KCC, Novak J, Neylon J, Han C, Liu A, Dandapani S, Glaser S. Dosimetric comparison of multiple vs single isocenter technique for linear accelerator-based stereotactic radiosurgery: The Importance of the six degree couch. J Appl Clin Med Phys 2021; 22:45-49. [PMID: 34021698 PMCID: PMC8200442 DOI: 10.1002/acm2.13286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Single isocenter technique (SIT) for linear accelerator-based stereotactic radiosurgery (SRS) is feasible. However, SIT introduces the potential for rotational error which can lead to geographical miss. Additional planning treatment volume (PTV) margin is required when using SIT. With the six degrees of freedom (6DoF) couch, rotational error can be minimized. We sought to evaluate the effect of the 6DoF couch on the dosimetry of patients with multiple brain metastases treated with SIT. MATERIALS AND METHODS Ten consecutive patients treated with SRS to ≥3 metastases were identified. Original treatments had MIT plans (MITP). The lesions were replanned using SIT. Lesions 5-10 cm from isocenter had an additional 1mm of margin. Patients were replanned with these additional margins to account for inability to correct rotational error (SITPM). Multiple dosimetric variables and time metrics were evaluated. Dosimetry planning time (DPT) and patient treatment time (PTT) were evaluated. Statistics were calculated using the Wilcoxon signed-rank test. RESULTS A total of 73 brain metastases receiving SRS, to a median of 6 lesions per patient, were identified. MITPs treated 73 lesions with 63 isocenters. On average, MITPs had a 19.2% higher brain V12 than SITPs (P = 0.017). For creation of SITPM, 30 lesions required 1 mm of additional margin, while none required 2 mm of margin. This increased V12 by 47.8% on average per patient (P = 0.008) from SITP to SITPM. DPT was 5.5 hours for SITP, while median for MITP was 12.5 hours (P = 0.005) PTT was 30 minutes for SITP, while median for MITP was 144 minutes (P = 0.005). CONCLUSIONS SITPs are comparable to MITPs if rotational error can be corrected with the use of a 6DoF couch. Increasing margin to account for rotational error leads to a nearly 50% increase in V12, which could result in higher rates of radiation necrosis. Time savings are significant using SIT.
Collapse
Affiliation(s)
- Dania Amaya
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Ashwin Shinde
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Christopher Wohlers
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Ka Chun Carson Wong
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Jennifer Novak
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - John Neylon
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Chunhui Han
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - An Liu
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Savita Dandapani
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Scott Glaser
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| |
Collapse
|