1
|
Oglat AA. A review of ultrasound contrast media. F1000Res 2024; 12:1444. [PMID: 38817410 PMCID: PMC11137482 DOI: 10.12688/f1000research.140131.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/01/2024] Open
Abstract
Efforts have been made over the last five decades to create effective ultrasonic contrast media (UCM) for cardiac and noncardiac applications. The initial UCM was established in the 1980s, following publications from the 1960s that detailed the discovery of ultrasonic contrast enhancement using small gaseous bubbles in echocardiographic examinations. An optimal contrast agent for echography should possess the following characteristics: non-toxicity, suitability for intravenous injection, ability to traverse pulmonary, cardiac, and capillary circulations, and stability for recirculation. Definity, Optison, Sonazoid, and SonoVue are examples of current commercial contrast media. These contrast media have shown potential for various clinical reasons, both on-label and off-label. Several possible UCMs have been developed or are in progress. Advancements in comprehending the physical, chemical, and biological characteristics of microbubbles have significantly improved the visualization of tumor blood vessels, the identification of areas with reduced blood supply, and the enhanced detection of narrowed blood vessels. Innovative advances are expected to enhance future applications such as ultrasonic molecular imaging and therapeutic utilization of microbubbles.
Collapse
Affiliation(s)
- Ammar A. Oglat
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan., The Hashemite University, Az-Zarqa, Zarqa Governorate, 13133, Jordan
| |
Collapse
|
2
|
Jia Y, Zhang S, Zhang X, Long H, Xu C, Bai Y, Cheng Y, Wu D, Deng M, Qiu CW, Liu X. Compact meta-differentiator for achieving isotropically high-contrast ultrasonic imaging. Nat Commun 2024; 15:2934. [PMID: 38575561 PMCID: PMC10995138 DOI: 10.1038/s41467-024-47303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Ultrasonic imaging is crucial in the fields of biomedical engineering for its deep penetration capabilities and non-ionizing nature. However, traditional techniques heavily rely on impedance differences within objects, resulting in poor contrast when imaging acoustically transparent targets. Here, we propose a compact spatial differentiator for underwater isotropic edge-enhanced imaging, which enhances the imaging contrast without the need for contrast agents or external physical fields. This design incorporates an amplitude meta-grating for linear transmission along the radial direction, combined with a phase meta-grating that utilizes focus and spiral phases with a first-order topological charge. Through theoretical analysis, numerical simulations, and experimental validation, we substantiate the effectiveness of our technique in distinguishing amplitude objects with isotropic edge enhancements. Importantly, this method also enables the accurate detection of both phase objects and artificial biological models. This breakthrough creates new opportunities for applications in medical diagnosis and nondestructive testing.
Collapse
Affiliation(s)
- Yurou Jia
- Department of Physics, MOE Key Laboratory of Modern Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Suying Zhang
- Department of Physics, MOE Key Laboratory of Modern Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xuan Zhang
- Department of Physics, MOE Key Laboratory of Modern Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Houyou Long
- Department of Physics, MOE Key Laboratory of Modern Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
| | - Caibin Xu
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China
| | - Yechao Bai
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Ying Cheng
- Department of Physics, MOE Key Laboratory of Modern Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Dajian Wu
- Jiangsu Key Lab on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Mingxi Deng
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Xiaojun Liu
- Department of Physics, MOE Key Laboratory of Modern Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
3
|
Oglat AA. A Review of Blood-mimicking Fluid Properties Using Doppler Ultrasound Applications. J Med Ultrasound 2022; 30:251-256. [PMID: 36844776 PMCID: PMC9944827 DOI: 10.4103/jmu.jmu_60_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 12/28/2022] Open
Abstract
Doppler imaging ultrasound characterization and standardization requires blood that is called blood mimicking fluid for the exam. With recognized internal properties, acoustic and physical features of this artificial blood. Both acoustical and physical merits set in the International Electrotechnical Commission (IEC) scale are determined as regular values, where the components utilized in the artificial blood preparation must have values identical to the IEC values. An artificial blood is commercially available in the medical application and may not be suitable in the mode of ultrasonic device or for rate of new imaging technique. It is sometimes qualified to have the strength to produce sound features and simulate blood configuration for particular implementations. In the current review article, appropriate artificial blood components, fluids, and measurements are described that have been created using varied materials and processes that have modified for medical applications.
Collapse
Affiliation(s)
- Ammar A. Oglat
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan,Address for correspondence: Dr. Ammar A. Oglat, Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan. E-mail:
| |
Collapse
|
4
|
Oglat AA. Performance Evaluation of an Ultrasonic Imaging System Using Tissue-Mimicking Phantoms for Quality Assurance. Biomimetics (Basel) 2022; 7:biomimetics7030130. [PMID: 36134934 PMCID: PMC9496229 DOI: 10.3390/biomimetics7030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diagnostic ultrasound or sonography is an image that can provide valuable information for diagnosing and treating a variety of diseases and conditions. The aim of this research study is to examine the performance and accuracy of the ultrasonic imaging system for the guarantee of diagnosis quality assurance, and to adjust the penetration settings to minimize the time of repeat scans and maintenance duration during research experiments. Measurements in this experiment included the resolution (axial and lateral) and focal zones. Moreover, the evaluation was done by completing all the measurements at different depths on a multipurpose phantom model 539. The phantom was bought from the market and was not fabricated by the author. The measurements were achieved by applying two different transducers: curved and linear (flat). The ultrasound images were obtained and tested by using calipers (electronic), and the estimations and observations were read by using all the taken measurements and images. As a result, because the phantom depths were different, the penetration settings were different too, indicating that the depth impacted the penetrations of the created ultrasound image. Moreover, after the comparison of the recorded measurements and results, it was found that all measurements were within the accepted (standard) value and that the true value was specified by the production of the phantom.
Collapse
Affiliation(s)
- Ammar A Oglat
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| |
Collapse
|