1
|
Zinovkin DA, Wang H, Yu Z, Zhang Q, Zhang Y, Wei S, Zhou T, Zhang Q, Zhang J, Nadyrov EA, Farooq A, Lyzikova Y, Vejalkin IV, Slepokurova II, Pranjol MZI. The vasculogenic mimicry, CD146 + and CD105 + microvessel density in the prognosis of endometrioid endometrial adenocarcinoma: a single-centre immunohistochemical study. Biomarkers 2024:1-7. [PMID: 39392041 DOI: 10.1080/1354750x.2024.2415078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
The microvessel compartment is crucial in the tumour microenvironment of endometrioid adenocarcinoma (EA). This study investigated the role of vasculogenic mimicry (VM), CD146, and CD105 microvessel density in the clinical prognosis of EA. A total of 188 EA cases were analyzed, with VM channels and microvessels detected using PAS/CD31, CD146, and CD105 staining. Mann-Whitney and Fisher exact tests were used to compare the study groups according to the evaluated criteria. ROC analysis included determination of the confidence interval (CI) and area under the ROC curve. The Mantel-Cox test was used to analyze progression-free survival. Multivariate Cox proportional hazard analysis was performed using stepwise regression. Results showed that VM channels and CD146 and CD105 microvessels were significantly higher (p < 0.0001) in cases with unfavourable prognosis. Univariate survival analysis highlighted the significant role of these factors in progression-free survival, while multivariate Cox analysis identified VM and CD146+ vessels as predictive factors. This study demonstrates, for the first time, that VM, CD146, and CD105-positive vessels are involved in EA prognosis, suggesting their potential as independent prognostic indicators and targets for antiangiogenic therapy. However, these findings require further validation through large-scale studies.
Collapse
Affiliation(s)
- Dmitry A Zinovkin
- Department of Pathology, Gomel State Medical University, Gomel, Belarus
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Clinical Research Center of Cancer Immunotherapy, Wuhan, Hubei, People's Republic of China
| | - Zhicheng Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ting Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Eldar A Nadyrov
- Department of Histology, Embryology and Cellular Biology, Gomel State Medical University, Gomel, Belarus
| | - Abdullah Farooq
- Department of Pathology, Gomel State Medical University, Gomel, Belarus
| | - Yulia Lyzikova
- Department of Obstetrics and Gynecology, Gomel State Medical University, Gomel, Belarus
| | - Ilya V Vejalkin
- Laboratory of Epidemiology, Republican Research Center for Radiation Medicine and Human Ecology, Gomel, Belarus
| | | | | |
Collapse
|
2
|
Aghazadeh S, Peng Q, Dardmeh F, Hjortdal JØ, Zachar V, Alipour H. Immunophenotypical Characterization of Limbal Mesenchymal Stromal Cell Subsets during In Vitro Expansion. Int J Mol Sci 2024; 25:8684. [PMID: 39201371 PMCID: PMC11354999 DOI: 10.3390/ijms25168684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Limbal mesenchymal stromal cells (LMSCs) reside in the limbal niche, supporting corneal integrity and facilitating regeneration. While mesenchymal stem/stromal cells (MSCs) are used in regenerative therapies, there is limited knowledge about LMSC subpopulations and their characteristics. This study characterized human LMSC subpopulations through the flow cytometric assessment of fifteen cell surface markers, including MSC, wound healing, immune regulation, ASC, endothelial, and differentiation markers. Primary LMSCs were established from remnant human corneal transplant specimens and passaged eight times to observe changes during subculture. The results showed the consistent expression of typical MSC markers and distinct subpopulations with the passage-dependent expression of wound healing, immune regulation, and differentiation markers. High CD166 and CD248 expressions indicated a crucial role in ocular surface repair. CD29 expression suggested an immunoregulatory role. Comparable pigment-epithelial-derived factor (PEDF) expression supported anti-inflammatory and anti-angiogenic roles. Sustained CD201 expression indicated maintained differentiation capability, while VEGFR2 expression suggested potential endothelial differentiation. LMSCs showed higher VEGF expression than fibroblasts and endothelial cells, suggesting a potential contribution to ocular surface regeneration through the modulation of angiogenesis and inflammation. These findings highlight the heterogeneity and multipotent potential of LMSC subpopulations during in vitro expansion, informing the development of standardized protocols for regenerative therapies and improving treatments for ocular surface disorders.
Collapse
Affiliation(s)
- Sara Aghazadeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Qiuyue Peng
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Fereshteh Dardmeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | | | - Vladimir Zachar
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Hiva Alipour
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| |
Collapse
|
3
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
4
|
You JR, Chen YT, Hsieh CY, Chen SY, Lin TY, Shih JS, Chen GT, Feng SW, Peng TY, Wu CY, Lee IT. Exploring Possible Diagnostic Precancerous Biomarkers for Oral Submucous Fibrosis: A Narrative Review. Cancers (Basel) 2023; 15:4812. [PMID: 37835505 PMCID: PMC10571555 DOI: 10.3390/cancers15194812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Oral submucous fibrosis (OSF) stands as a progressive oral ailment, designated as a potentially malignant disorder. OSF has gained widespread recognition as a significant precursor to malignant transformation. In the pursuit of dependable, straightforward, and non-invasive diagnostic measures for the early detection of oral malignant progression, research has delved into potential diagnostic biomarkers of OSF. This comprehensive review delves into current investigations that explore the correlation between various biomarkers and OSF. The molecular biomarkers of OSF are categorized based on cytology and sampling methods. Moreover, this review encompasses pertinent studies detailing how these biomarkers are acquired and processed. Within this scope, we scrutinize four potential biomarkers that hold the promise of facilitating the development of diagnostic tools for detecting early-stage OSF.
Collapse
Affiliation(s)
- Jie-Ru You
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (J.-R.Y.); (Y.-T.C.); (C.-Y.H.); (S.-Y.C.); (T.-Y.L.); (J.-S.S.); (G.-T.C.); (S.-W.F.); (T.-Y.P.)
| | - Ya-Ting Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (J.-R.Y.); (Y.-T.C.); (C.-Y.H.); (S.-Y.C.); (T.-Y.L.); (J.-S.S.); (G.-T.C.); (S.-W.F.); (T.-Y.P.)
| | - Chia-Yu Hsieh
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (J.-R.Y.); (Y.-T.C.); (C.-Y.H.); (S.-Y.C.); (T.-Y.L.); (J.-S.S.); (G.-T.C.); (S.-W.F.); (T.-Y.P.)
| | - Sin-Yu Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (J.-R.Y.); (Y.-T.C.); (C.-Y.H.); (S.-Y.C.); (T.-Y.L.); (J.-S.S.); (G.-T.C.); (S.-W.F.); (T.-Y.P.)
| | - Tzu-Yao Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (J.-R.Y.); (Y.-T.C.); (C.-Y.H.); (S.-Y.C.); (T.-Y.L.); (J.-S.S.); (G.-T.C.); (S.-W.F.); (T.-Y.P.)
| | - Jing-Syuan Shih
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (J.-R.Y.); (Y.-T.C.); (C.-Y.H.); (S.-Y.C.); (T.-Y.L.); (J.-S.S.); (G.-T.C.); (S.-W.F.); (T.-Y.P.)
| | - Guan-Ting Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (J.-R.Y.); (Y.-T.C.); (C.-Y.H.); (S.-Y.C.); (T.-Y.L.); (J.-S.S.); (G.-T.C.); (S.-W.F.); (T.-Y.P.)
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (J.-R.Y.); (Y.-T.C.); (C.-Y.H.); (S.-Y.C.); (T.-Y.L.); (J.-S.S.); (G.-T.C.); (S.-W.F.); (T.-Y.P.)
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (J.-R.Y.); (Y.-T.C.); (C.-Y.H.); (S.-Y.C.); (T.-Y.L.); (J.-S.S.); (G.-T.C.); (S.-W.F.); (T.-Y.P.)
| | - Chia-Yu Wu
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan; (J.-R.Y.); (Y.-T.C.); (C.-Y.H.); (S.-Y.C.); (T.-Y.L.); (J.-S.S.); (G.-T.C.); (S.-W.F.); (T.-Y.P.)
| |
Collapse
|
5
|
Hakuno SK, Janson SGT, Trietsch MD, de Graaf M, de Jonge-Muller E, Crobach S, Harryvan TJ, Boonstra JJ, Dinjens WNM, Slingerland M, Hawinkels LJAC. Endoglin and squamous cell carcinomas. Front Med (Lausanne) 2023; 10:1112573. [PMID: 37396898 PMCID: PMC10313935 DOI: 10.3389/fmed.2023.1112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Despite the fact that the role of endoglin on endothelial cells has been extensively described, its expression and biological role on (epithelial) cancer cells is still debatable. Especially its function on squamous cell carcinoma (SCC) cells is largely unknown. Therefore, we investigated SCC endoglin expression and function in three types of SCCs; head and neck (HNSCC), esophageal (ESCC) and vulvar (VSCC) cancers. Endoglin expression was evaluated in tumor specimens and 14 patient-derived cell lines. Next to being expressed on angiogenic endothelial cells, endoglin is selectively expressed by individual SCC cells in tumor nests. Patient derived HNSCC, ESCC and VSCC cell lines express varying levels of endoglin with high interpatient variation. To assess the function of endoglin in signaling of TGF-β ligands, endoglin was overexpressed or knocked out or the signaling was blocked using TRC105, an endoglin neutralizing antibody. The endoglin ligand BMP-9 induced strong phosphorylation of SMAD1 independent of expression of the type-I receptor ALK1. Interestingly, we observed that endoglin overexpression leads to strongly increased soluble endoglin levels, which in turn decreases BMP-9 signaling. On the functional level, endoglin, both in a ligand dependent and independent manner, did not influence proliferation or migration of the SCC cells. In conclusion, these data show endoglin expression on individual cells in the tumor nests in SCCs and a role for (soluble) endoglin in paracrine signaling, without directly affecting proliferation or migration in an autocrine manner.
Collapse
Affiliation(s)
- Sarah K. Hakuno
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Stefanus G. T. Janson
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Marjolijn D. Trietsch
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Department of Gynecology, Leiden University Medical Center, Leiden, Netherlands
| | - Manon de Graaf
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Eveline de Jonge-Muller
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Stijn Crobach
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Tom J. Harryvan
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Jurjen J. Boonstra
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Winand N. M. Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Marije Slingerland
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
The Multiple Roles of CD147 in the Development and Progression of Oral Squamous Cell Carcinoma: An Overview. Int J Mol Sci 2022; 23:ijms23158336. [PMID: 35955471 PMCID: PMC9369056 DOI: 10.3390/ijms23158336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cluster of differentiation (CD)147, also termed extracellular matrix metalloprotease inducer or basigin, is a glycoprotein ubiquitously expressed throughout the human body, the oral cavity included. CD147 actively participates in physiological tissue development or growth and has important roles in reactive processes such as inflammation, immunity, and tissue repair. It is worth noting that deregulated expression and/or activity of CD147 is observed in chronic inflammatory or degenerative diseases, as well as in neoplasms. Among the latter, oral squamous cell carcinoma (OSCC) is characterized by an upregulation of CD147 in both the neoplastic and normal cells constituting the tumor mass. Most interestingly, the expression and/or activity of CD147 gradually increase as healthy oral mucosa becomes inflamed; hyperplastic/dysplastic lesions are then set on, and, eventually, OSCC develops. Based on these findings, here we summarize published studies which evaluate whether CD147 could be employed as a marker to monitor OSCC development and progression. Moreover, we describe CD147-promoted cellular and molecular events which are relevant to oral carcinogenesis, with the aim to provide useful information for assessing whether CD147 may be the target of novel therapeutic approaches directed against OSCC.
Collapse
|