1
|
Kumar VJ, Ezhilarasan D, Veeraiyan DN. Oral submucosal fibrosis: An updated molecular mechanism on pathogenesis and treatment modalities. Oral Dis 2024; 30:4798-4799. [PMID: 38376113 DOI: 10.1111/odi.14901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Affiliation(s)
- Vadivel Jayanth Kumar
- Department of Oral Medicine, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Deepak Nallasamy Veeraiyan
- Department of Prosthodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Gayathri K, Abhinand P, Gayathri V, Prasanna Lakshmi V, Chamundeeswari D, Jiang L, Tian Z, Malathi N. Computational analysis of phytocompounds in Centella asiatica for its antifibrotic and drug-likeness properties - Herb to drug study. Heliyon 2024; 10:e33762. [PMID: 39027607 PMCID: PMC11255509 DOI: 10.1016/j.heliyon.2024.e33762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Oral submucous fibrosis (OSMF) is a potentially malignant disorder with no permanent cure that affects the quality of life due to trismus. Computational pharmacology has accelerated the discovery of drug candidates for the treatment of incurable diseases. The present study aimed to screen the compounds of the miracle herb Centella asiatica with drug-likeness properties based on the absorption, distribution, metabolism, and excretion (ADME) properties. The pharmacological actions of these screened compounds against OSMF were identified by network pharmacology, gene ontology, pathway enrichment analysis, molecular docking, and simulation. Fifteen drug-like ligands were identified after virtual screening viz; asiatic acid, kaempferol, quercetin, luteolin, apigenin, bayogenin, gallic acid, isothankunic acid, madecassic acid, madasiatic acid, arjunolic acid, terminolic acid, catechin, epicatechin, and nobiletin. 850 potential targets were predicted for the ligands, which were analyzed against 354 proteins associated with OSMF. Compound pathway analysis and disease pathway analysis identified 53 common proteins. The GO enrichment analysis identified 472 biological process terms, 76 molecular function terms, and 44 cellular component terms. Pathway enrichment analysis predicted 142 KEGG pathways, 35 Biocarta pathways, and 236 Reactome pathways for the target proteins. The analysis revealed that the herb targets crucial events of fibrosis such as inflammation, oxidative stress, apoptosis, collagen deposition, and epithelial-mesenchymal transition. The common 53 proteins were used for protein-protein interaction (PPI) network analysis, which revealed 4 key proteins interacting with the phytocompounds viz; transforming growth factor-β1 (TGF-β1), mothers against decapentaplegic-3 (SMAD-3), mitogen-activated protein kinase-1 (MAPK-1) and proto-oncogene tyrosine-protein kinase (SRC). Molecular docking revealed that all ligands had a good binding affinity to the target proteins. Bayogenin had the highest binding affinity towards MAPK-1 (-9.7 kcal/mol), followed by isothankunic acid towards SRC protein (-9.3 kcal/mol). Madasiatic acid had the highest binding affinity to SMAD-3 (-7.6 kcal/mol) and TGF-β1 (-7.1 kcal/mol). Molecular dynamics simulation demonstrated stable ligand protein interactions of bayogenin and MAPK complex, isothankunic acid and SRC complex. This in silico study is the first to identify potential phytochemicals present in Centella asiatica and their target molecules, which might be responsible for reversing OSMF.
Collapse
Affiliation(s)
- K. Gayathri
- Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
- Department of Oral Pathology and Microbiology, Sri Ramachandra Dental College, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - P.A. Abhinand
- Department of Bioinformatics, Faculty of Engineering and Technology, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, 600116, India
| | - V. Gayathri
- Centre for Toxicology and Developmental Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - V. Prasanna Lakshmi
- Department of Bioinformatics, Faculty of Engineering and Technology, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, 600116, India
| | - D. Chamundeeswari
- Faculty of Pharmacy, Meenakshi Academy of Higher Education and Research, Chennai, India
| | - Li Jiang
- Department of Oral Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Tian
- Department of Oral Pathology, The Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - N. Malathi
- Department of Oral Pathology and Microbiology, Sri Ramachandra Dental College, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| |
Collapse
|
3
|
Liu Z, Hu W, Shan Z, Liu S, Yao Z, Quan H. Evaluation of stromal myofibroblasts in oral submucous fibrosis and its malignant transformation: An immunohistochemical study. J Cancer Res Ther 2024; 20:706-711. [PMID: 38687943 DOI: 10.4103/jcrt.jcrt_498_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/01/2023] [Indexed: 05/02/2024]
Abstract
BACKGROUND Oral submucous fibrosis (OSF) is a precancerous lesion, with oral squamous cell carcinoma (OSCC) being the most prevalent malignancy affecting the oral mucosa. The malignant transformation of OSF into OSCC is estimated to occur in 7-13% of cases. Myofibroblasts (MFs) play pivotal roles in both physiological and pathological processes, such as wound healing and tumorigenesis, respectively. This study aimed to explore the involvement of MFs in the progression of OSF and its malignant transformation. MATERIALS AND METHODS In total, 94 formalin-fixed paraffin-embedded tissue blocks were collected, including normal oral mucosa (NOM; n = 10), early-moderate OSF (EMOSF; n = 29), advanced OSF (AOSF; n = 29), paracancerous OSF (POSF; n = 21), and OSCC (n = 5) samples. Alpha-smooth muscle actin was used for the immunohistochemical identification of MFs. RESULTS NOM exhibited infrequent expression of MFs. A higher staining index of MFs was found in AOSF, followed by EMOSF and NOM. Additionally, a significant increase in the staining index of MFs was found from EMOSF to POSF and OSCC. The staining index of MFs in NOM, EMOSF, AOSF, POSF, and OSCC was 0.14 ± 0.2, 1.69 ± 1.4, 2.47 ± 1.2, 3.57 ± 2.6, and 8.86 ± 1.4, respectively. All results were statistically significant (P < 0.05). CONCLUSIONS The expression of MFs exhibited a gradual increase as the disease progressed from mild to malignant transformation, indicating the contributory role of MFs in the fibrogenesis and potential tumorigenesis associated with OSF.
Collapse
Affiliation(s)
- Ziyi Liu
- Department of Oral Maxillofacial Surgery, Central South University, Changsha, China
- Department of Oral Maxillofacial Surgery, Yiyang Medical College, Yiyang, China
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Wenwu Hu
- Department of Oral Maxillofacial Surgery, Central South University, Changsha, China
- Department of Oral Maxillofacial Surgery, Yiyang Medical College, Yiyang, China
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhongyan Shan
- Department of Oral Maxillofacial Surgery, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Sixuan Liu
- Department of Oral Maxillofacial Surgery, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhigang Yao
- Department of Oral Pathology, Xiangya Stomatological Hospital and School of Stomatology, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Hongzhi Quan
- Department of Oral Maxillofacial Surgery, Central South University, Changsha, China
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
4
|
Yang HW, Chun-Yu Ho D, Liao HY, Liao YW, Fang CY, Ng MY, Yu CC, Lin FC. Resveratrol inhibits arecoline-induced fibrotic properties of buccal mucosal fibroblasts via miR-200a activation. J Dent Sci 2024; 19:1028-1035. [PMID: 38618058 PMCID: PMC11010603 DOI: 10.1016/j.jds.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose Oral submucous fibrosis (OSF) is a precancerous lesion in the oral cavity, commonly results from the Areca nut chewing habit. Arecoline, the main component of Areca nut, is known to stimulate the activation of myofibroblasts, which can lead to abnormal collagen I deposition. Meanwhile, Resveratrol is a non-flavonoid phenolic substance that can be naturally obtained from various berries and foods. Given that resveratrol has significant anti-fibrosis traits in other organs, but little is known about its effect on OSF, this study aimed to investigate the therapeutic impact of resveratrol on OSF and its underlying mechanism. Materials and methods The cytotoxicity of resveratrol was tested using normal buccal mucosal fibroblasts (BMFs). Myofibroblast phenotypes such as collagen contractile, enhanced migration, and wound healing capacities in dose-dependently resveratrol-treated fBMFs were examined. Results Current results showed that arecoline induced cell migration and contractile activity in BMFs as well as upregulated the expressions of α-SMA, type I collagen, and ZEB1 markers. Resveratrol intervention, on the other hand, was shown to inhibit arecoline-induced myofibroblast activation and reduce myofibroblast hallmarks and EMT markers. Additionally, resveratrol was also demonstrated to restore the downregulated miR-200a in the arecoline-stimulated cells. Conclusion In a nutshell, these findings implicate that resveratrol may have an inhibitory influence on arecoline-induced fibrosis via the regulation of miR-200a. Hence, resveratrol may be used as a therapeutic strategy for OSF intervention.
Collapse
Affiliation(s)
- Hui-Wen Yang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Dennis Chun-Yu Ho
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Heng-Yi Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Fang
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Fu-Chen Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
5
|
Shetty SS, Sharma M, Padam KSR, Kudva A, Patel P, Radhakrishnan R. The interplay of EMT and stemness driving malignant transformation of Oral Submucous Fibrosis. J Oral Biol Craniofac Res 2024; 14:63-71. [PMID: 38261875 PMCID: PMC10794927 DOI: 10.1016/j.jobcr.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/25/2024] Open
Abstract
Background Oral submucous fibrosis (OSF) is a persistent oral mucosal condition that carries an elevated risk of undergoing malignant transformation. Our objective was to elucidate the involvement of epithelial-to-mesenchymal transition (EMT) in OSF and its progression to malignancy by studying a panel of EMT markers, thereby understanding the molecular mechanisms. Methods An immunohistochemical analysis was done to detect the presence of E-cadherin, N-cadherin, pan-cytokeratin (PanCK), vimentin, α-SMA (alpha-smooth muscle actin), and CD44 in a total of 100 tissue samples. These samples comprised 40 cases of OSF, 20 cases of oral squamous cell carcinoma associated with OSF (OSFSCC), and 40 cases of oral squamous cell carcinoma (OSCC). A whole transcriptomic analysis was performed on a group of seven matched samples encompassing NOM, OSF, OSFSCC, and OSCC. Results We observed significantly decreased expression of E-cadherin and PanCK, while N-cadherin, vimentin, α-SMA, and CD44 showed significantly higher expression in OSFSCC and OSCC as compared to OSF, both at protein and RNA levels. CD44 expression was noticeably higher in OSFSCC (p < 0.001) than in OSCC. Conclusion Downregulation of epithelial markers with concomitant upregulation of mesenchymal and stem cell markers suggests the potential role of EMT and stemness in accelerating the pathogenesis and malignant transformation of OSF. The high levels of CD44 expression seen in OSFSCC indicate a high propensity for aggressiveness and acquisition of stem-like characteristics by the cells undergoing EMT.
Collapse
Affiliation(s)
- Smitha Sammith Shetty
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mohit Sharma
- Department of Oral Pathology, SGT Dental College Hospital & Research Institute, Gurugram, Haryana, 122505, India
| | - Kanaka Sai Ram Padam
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Adarsh Kudva
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Pratik Patel
- Sangee Oral Pathology Center, Haripura, Surat, Gujarat, 395003, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
- Department of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S102TA, UK
| |
Collapse
|
6
|
Molecular pathways of oral submucous fibrosis and its progression to malignancy. Arch Oral Biol 2023; 148:105644. [PMID: 36804642 DOI: 10.1016/j.archoralbio.2023.105644] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
OBJECTIVE The review aims to comprehend various factors engaged in the alteration of molecular events resulting in Oral submucous fibrosis (OSMF) and its malignant transformation. DESIGN Literature pertinent to pathways involved in OSMF were explored in databases such as PubMed, Scopus and Google Scholar. The relevant literature was reviewed and critically appraised in this narrative review. RESULTS Areca nut components influence myriad of cellular molecules such as cytokines, growth factors, myofibroblasts, non-coding RNAs and alter their expression. These aberrantly expressed molecules drive the progression of OSMF from localized inflammation to fibrosis of buccal mucosa. The oral tissue suffers from oxidative stress, hypoxia, autophagy, aberration of cell cycle and DNA damage. Apoptosis of epithelial layer results in its atrophy facilitating deeper penetration of areca nut elements. With the advance of disease, epithelial-mesenchymal transition eventuates and promotes dysplasia. The jeopardized expression of various cellular molecules, suppressed apoptosis, along with increased genetic alterations and neovascularization favors the malignant transformation. CONCLUSION OSMF is a progressive disorder with complex mechanism of pathogenesis initiated by inflammation of oral mucosa. Continuous habit of areca nut chewing and the resulting insult to the tissues prevents healing process and is destined to debilitating disease which affects the quality of life with a higher probability of progression to malignancy.
Collapse
|
7
|
Chen J, Li W, Liu B, Xie X. Low LINC02147 expression promotes the malignant progression of oral submucous fibrosis. BMC Oral Health 2022; 22:316. [PMID: 35906577 PMCID: PMC9338683 DOI: 10.1186/s12903-022-02346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Key lncRNAs associated with the malignant progression of oral submucous fibrosis (OSF) to oral squamous cell carcinoma (OSCC) were identified. METHODS Key lncRNAs with sequential changes from normal oral mucosa (NOM) to OSF to OSCC were identified based on the GEO database. Kaplan-Meier analysis was used to screen lncRNAs related to OSCC prognosis. Cox regression analysis was used to validate the independent prognostic value. qPCR was used to confirm the expression of the candidate lncRNAs. Gene set enrichment analysis (GSEA), nucleocytoplasmic separation assay, fluorescence in situ hybridization, RNA knockdown, western blot, and cell viability assay were performed to investigate the biological functions of the candidate lncRNA. A nomogram was constructed to quantitatively predict OSCC prognosis based on TCGA. RESULTS Bioinformatics methods indicated that LINC02147 was sequentially downregulated from NOM to OSF to OSCC, as confirmed by clinical tissues and cells. Meanwhile, low LINC02147 expression, as an independent prognostic factor, predicted a poor prognosis for OSCC. GSEA and in vitro studies suggested that low LINC02147 expression promoted OSF malignant progression by promoting cell proliferation and differentiation. A LINC02147 signature-based nomogram successfully quantified each indicator's contribution to the overall survival of OSCC. CONCLUSIONS Low LINC02147 expression promoted OSF malignant progression and predicted poor OSCC prognosis.
Collapse
Affiliation(s)
- Jun Chen
- Hunan Key Laboratory of Oral Health Research & Hunan 3D, Printing Engineering Research Center of Oral Care and Hunan Clinical Research Center of Oral Major Diseases and Oral Health and Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, 72 Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China
| | - Wenjie Li
- Hunan Key Laboratory of Oral Health Research & Hunan 3D, Printing Engineering Research Center of Oral Care and Hunan Clinical Research Center of Oral Major Diseases and Oral Health and Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, 72 Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China. .,State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, People's Republic of China. .,Department of Oral Health Science, School of Dentistry, University of Washington, Seattle, WA, 98195, USA.
| | - Binjie Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D, Printing Engineering Research Center of Oral Care and Hunan Clinical Research Center of Oral Major Diseases and Oral Health and Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, 72 Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China.
| | - Xiaoli Xie
- Hunan Key Laboratory of Oral Health Research & Hunan 3D, Printing Engineering Research Center of Oral Care and Hunan Clinical Research Center of Oral Major Diseases and Oral Health and Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, 72 Xiangya Road, Kaifu District, Changsha, 410008, People's Republic of China.
| |
Collapse
|
8
|
Puri N, Ahuja US, Gupta R, Gandhi P, Punia RS, Choudhary A. Analysis of Expression of Myofibroblasts in Oral Submucous Fibrosis: An Immunohistochemistry Study. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2201312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Oral submucous fibrosis (OSMF) is a chronic disease that produces tissue fibrosis and is considered to be a potentially malignant disorder. The exact pathogenesis and malignant conversion mechanism of this disorder are still unknown. Myofibroblasts have been implicated as one of the possible pathological mechanisms responsible for the pathophysiology of OSMF. The present study was conducted to evaluate the expression of myofibroblasts (MF) in normal mucosa and different grades of OSMF.
Materials & Methods:
The sample consisted of a total of 80 specimens. The study group included specimens from clinically and histopathologically confirmed OSMF patients. The specimens were divided into four groups. Group 1 consisted of 19 specimens of grade III OSMF. Group II had 20 specimens of grade II OSMF, Group 3 with 21 specimens of grade I OSMF, and Group 4 constituted a control group of 20 normal epithelium specimens. Two sections each from all the four groups were obtained. While one section was stained with H and E, the other section was stained immunohistochemically using α-smooth muscle antibody. For analysis, the expression of myofibroblasts was categorized as strong, moderate, weak, or absent. All the results were recorded and subjected to statistical analysis.
Results:
In OSMF patients, irrespective of the grade, the expression of myofibroblast was strong in 28.33 percent of the patients, while it was moderate and weak in 30.00 percent and 40.00 percent of the patients, respectively. Expression of myofibroblast was noted to be significantly increased in grade III OSMF patients as compared to controls as well as grade I OSMF patients (p-value <0.05).
Conclusion:
Myofibroblasts expression is significantly raised in OSMF patients. The expression can also be correlated within different grades of OSMF where advanced stages show comparatively high expression of these smooth muscles like fibroblasts. Hence, we suggest that myofibroblasts could be assessed as markers for analyzing the progression of OSMF.
Collapse
|
9
|
Research Achievements of Oral Submucous Fibrosis: Progress and Prospect. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6631856. [PMID: 33791368 PMCID: PMC7997751 DOI: 10.1155/2021/6631856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
Oral submucous fibrosis (OSMF) is a kind of chronic, insidious disease, and it is categorized into potentially malignant disorders (PMD), which poses a global and regional problem to public health. It is considered to be a multifactorial disease, such as due to areca nut chewing, trace element disorders, and genetic susceptibility. However, there is still no unanimous conclusion on its pathogenesis, diagnosis, and treatment strategies. Hence, this article provides a comprehensive review and prospect of OSMF research, providing scholars and clinicians with a better perspective and new ideas for the research and treatment of OSMF.
Collapse
|