Bellido-Guzmán R, Ladera-Castañeda M, Castro-Pérez Vargas AM, López-Gurreonero C, Cornejo-Pinto A, Aliaga-Mariñas A, Cervantes-Ganoza LA, Cayo-Rojas CF. Tensile Strength and Elastic Modulus of Gutta-percha Cones Disinfected with Sodium Hypochlorite at Different Immersion Times: An
In Vitro Comparative Study.
J Int Soc Prev Community Dent 2024;
14:69-77. [PMID:
38559640 PMCID:
PMC10980304 DOI:
10.4103/jispcd.jispcd_106_22]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 04/04/2024] Open
Abstract
Aim
The tensile strength and modulus of elasticity of gutta-percha cones can be chemically altered due to disinfectant solutions. Therefore, the aim of the present study was to compare tensile strength and elastic modulus of gutta-percha cones subjected to sodium hypochlorite (NaOCl) disinfection at different times.
Materials and Methods
This in vitro and longitudinal experimental study consisted of 45 gutta-percha cones, divided equally into three groups: Group 1 (disinfection with 2.5% NaOCl), Group 2 (disinfection with 5.25% NaOCl), and control group. All groups were subdivided according to immersion times for 1, 5, and 10 minutes. Tensile strength and elastic modulus were measured with a universal testing machine. For comparing more than two independent groups, parametric analysis of variance test with Sheffe's post hoc was used and for multivariate analysis, and multivariate analysis of variance test based on Pillai's Trace was used. In all statistical analysis, a significance level P ≤ 0.05 was considered.
Results
When comparing the tensile strength of gutta-percha cones, no significant differences were observed after being immersed at 1, 5, and 10 minutes in NaOCl 2.5% (P = 0.715) and 5.25% (P = 0.585). Regarding the elastic modulus, a significant decrease (P < 0.05) was observed in those that were immersed in NaOCl 2.5% and 5.25% for 1, 5, and 10 minutes. Furthermore, increased NaOCl concentration significantly reduced the elastic modulus (P < 0.001). However, there were no significant differences in tensile strength (P > 0.05) and elastic modulus (P > 0.05), when evaluating the interaction between NaOCl concentration and time.
Conclusion
Increasing NaOCl concentration significantly reduced the modulus of elasticity without affecting the tensile strength of gutta-percha cones, regardless of immersion time. Furthermore, the interaction of time and NaOCl concentration did not significantly affect the tensile strength and elastic modulus.
Collapse