1
|
Alkhatib H, Mohamed F, Alfatama M, Assadpour E, Kharazmi MS, Mahdi Jafari S, Islam Sarker MZ, Kumar Sadasivuni K, Mohmad Sabere AS, Doolaanea AA. Pilot scale manufacturing of black seed oil-loaded alginate beads; process development, and stability of thymoquinone. Heliyon 2024; 10:e37630. [PMID: 39386775 PMCID: PMC11462023 DOI: 10.1016/j.heliyon.2024.e37630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The approach of ionic gelation was employed at the pilot scale of the 50 kg batch size to manufacture black seed oil (BSO)-loaded alginate (ALG) beads as a natural source supplementing the main bioactive compound of BSO, i.e., thymoquinone (TQ). The BSO-ALG emulsion was prepared by initially emulsifying BSO with alginate solution at the pilot scale in two stages. The final emulsion was then dripped through 12 units of 3D-printed multi-nozzles into a curing bath containing Ca2+. The dripping flow rate was scaled up to 288 mL/min through the 3D-printed multi-nozzles (22-gauge). The characteristics of pilot scale BSO-ALG beads were similar to those produced at the lab scale; the beads were spherical with a size of 1.84-1.94 mm. The mechanical strength and loss on drying ranged from 143.6 to 172 g and 77.85-81.96 %, respectively. The production yield and encapsulation efficiency were 77.53-83.65 % and 95.36-97.9 %, respectively. Furthermore, the emulsification process did not affect TQ stability, while the curing process reduced TQ concentration from 1.51 % to 1.03 % w/w. Additionally, a substantial drop in TQ concentration in the encapsulated BSO was observed after the drying process, where it reached 0.23 % w/w. Finally, the stability of BSO-ALG beads in both wet and dried forms under real-time and accelerated conditions for 3 months revealed that beads were stable in terms of their organoleptic characteristics, size and sphericity, and loss on drying. Findings from this study enable the large-scale manufacturing of encapsulated BSO and similar bioactive compounds in ALG beads for the first time. These findings are valuable for advancing microencapsulation through ionic gelation and enhancing food preservation and safety.
Collapse
Affiliation(s)
- Hamzeh Alkhatib
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), 68100, Kuala Lumpur, Malaysia
| | - Farahidah Mohamed
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Kuala Terengganu, 22200, Malaysia
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Md Zaidul Islam Sarker
- Cooperative Research, Extension & Education Services (CEES), Northern Marianas College, P.O. Box 501250, Saipan, MP, 96950, USA
| | | | - Awis Sukarni Mohmad Sabere
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), 68100, Kuala Lumpur, Malaysia
- Sabrena Experience, 1500 Dragon Street, Suite 160, Dallas, TX, 75207, USA
- Alphastar Lab Systems, Caddo Mills, TX, USA
| |
Collapse
|
2
|
Agah MS, Azadmard‐Damirchi S, Bodbodak S. Quality of oil extracted by cold press from Nigella sativa seeds conditioned and pre-treated by microwave. Food Sci Nutr 2024; 12:3529-3537. [PMID: 38726440 PMCID: PMC11077178 DOI: 10.1002/fsn3.4021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/13/2023] [Accepted: 01/28/2024] [Indexed: 05/12/2024] Open
Abstract
Black cumin (Nigella sativa) seed (BS) oil has received much interest in the food and pharmaceutical industries due to its valuable nutritional properties, but this oil has low oxidative stability. The effect of microwave pre-treatment at 0 to 2.5 min and conditioning with different buffers at pH 3 to 9 of BS, before oil extraction by cold press, were investigated. The oil extraction yield was higher; acid value (AV) and peroxide value (PV) were lower in the oil extracted from seeds, which were first microwaved and then moisturized and vice versa. BS with pH 3, microwave time of 1.25 min, and moisturizing level of 5%, which gave oil extraction yield of 27.2%, AV of (2.9 mg NaOH/g oil), and PV of (8.3 meq O2/kg oil), was selected as an optimum sample and its quality changes were investigated during storage compared with the oil extracted from the control sample (without any pre-treatment). In conclusion, the oil extracted from the pre-treated BS had higher bioactive components and lower AV and PV during the storage; therefore, microwave radiation and pH adjustment before oil extraction from BS by cold press are recommended.
Collapse
Affiliation(s)
- Mina Sanati Agah
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | | | - Samad Bodbodak
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
3
|
Abedinzadeh S, Torbati M, Azadmard‐Damirchi S, Hashempour‐Baltork F. Changes in the quality of oil extracted by hot pressing from black cumin ( Nigella sativa) seeds and by solvent from the obtained cake during refining. Food Sci Nutr 2024; 12:3563-3573. [PMID: 38726404 PMCID: PMC11077247 DOI: 10.1002/fsn3.4025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/03/2023] [Accepted: 01/30/2024] [Indexed: 05/12/2024] Open
Abstract
In this study, oil was extracted from black cumin (Nigella sativa) seed (BCS) by press, and oil was extracted from the obtained cake with a solvent. The changes in the quality of both crude oils obtained by pressing and by solvent were investigated during refining. Findings revealed that the p-anisidin value (p-AV) and fatty acid profile did not change significantly, but there were significant differences (p < .05) in the peroxide value (PV), reflective index, pigment contents, free fatty acid content (FFA%), and antioxidant activity (total phenol content (TPC), thymoquinone, and DPPH inhibition) of BCS oils obtained by the two different methods. PV and FFA decreased to less than 15 meqO2/kg and 0.3%, respectively, in the refined oil. The TPC (65%), thymoquinone (45-97%), carotenoids (86-89%), and chlorophyll (75-85%) were removed from BCS oil, but the DPPH value was raised by about 33%. The current study gives a clear picture of the changes during refining in BCS oil, which can be a useful guide in food applications.
Collapse
Affiliation(s)
- Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition and Food ScienceTabriz University of Medical SciencesTabrizIran
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food ScienceTabriz University of Medical SciencesTabrizIran
| | | | - Fataneh Hashempour‐Baltork
- Halal Research Centre of IRI, Iran Food and Drug AdministrationMinistry of Health and Medical EducationTehranIran
| |
Collapse
|
4
|
Derosa G, D’Angelo A, Maffioli P, Cucinella L, Nappi RE. The Use of Nigella sativa in Cardiometabolic Diseases. Biomedicines 2024; 12:405. [PMID: 38398007 PMCID: PMC10886913 DOI: 10.3390/biomedicines12020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 02/25/2024] Open
Abstract
Nigella sativa L. is an herb that is commonly used in cooking and in traditional medicine, particularly in Arab countries, the Indian subcontinent, and some areas of eastern Europe. Nigella sativa is also called "black cumin" or "black seeds", as the seeds are the most-used part of the plant. They contain the main bioactive component thymoquinone (TQ), which is responsible for the pleiotropic pharmacological properties of the seeds, including anti-oxidant, anti-inflammatory, anti-hypertensive, anti-hepatotoxic, hypoglycemic, and lipid-lowering properties. In this narrative review, both the potential mechanisms of action of Nigella sativa and the fundamental role played by pharmaceutical technology in optimizing preparations based on this herb in terms of yield, quality, and effectiveness have been outlined. Moreover, an analysis of the market of products containing Nigella sativa was carried out based on the current literature with an international perspective, along with a specific focus on Italy.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, 27100 Pavia, Italy;
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Italian Nutraceutical Society (SINut), 40100 Bologna, Italy
- Laboratory of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Angela D’Angelo
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Pamela Maffioli
- Centre of Diabetes, Metabolic Diseases, and Dyslipidemias, University of Pavia, 27100 Pavia, Italy;
- Regional Centre for Prevention, Surveillance, Diagnosis and Treatment of Dyslipidemias and Atherosclerosis, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Italian Nutraceutical Society (SINut), 40100 Bologna, Italy
| | - Laura Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology, Menopause Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Rossella Elena Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.C.); (R.E.N.)
- Research Center for Reproductive Medicine and Gynecological Endocrinology, Menopause Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
5
|
Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr 2023; 10:1126272. [PMID: 37818339 PMCID: PMC10561288 DOI: 10.3389/fnut.2023.1126272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Long used in traditional medicine, Nigella sativa (NS; Ranunculaceae) has shown significant efficacy as an adjuvant therapy for diabetes mellitus (DM) management by improving glucose tolerance, decreasing hepatic gluconeogenesis, normalizing blood sugar and lipid imbalance, and stimulating insulin secretion from pancreatic cells. In this review, the pharmacological and pharmacokinetic properties of NS as a herbal diabetes medication are examined in depth, demonstrating how it counteracts oxidative stress and the onset and progression of DM. Methods This literature review drew on databases such as Google Scholar and PubMed and various gray literature sources using search terms like the etiology of diabetes, conventional versus herbal therapy, subclinical pharmacology, pharmacokinetics, physiology, behavior, and clinical outcomes. Results The efficiency and safety of NS in diabetes, notably its thymoquinone (TQ) rich volatile oil, have drawn great attention from researchers in recent years; the specific therapeutic dose has eluded determination so far. TQ has anti-diabetic, anti-inflammatory, antioxidant, and immunomodulatory properties but has not proved druggable. DM's intimate link with oxidative stress, makes NS therapy relevant since it is a potent antioxidant that energizes the cell's endogenous arsenal of antioxidant enzymes. NS attenuates insulin resistance, enhances insulin signaling, suppresses cyclooxygenase-2, upregulates insulin-like growth factor-1, and prevents endothelial dysfunction in DM. Conclusion The interaction of NS with mainstream drugs, gut microbiota, and probiotics opens new possibilities for innovative therapies. Despite its strong potential to treat DM, NS and TQ must be examined in more inclusive clinical studies targeting underrepresented patient populations.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College - NIBGE-C, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences - PIEAS, Nilore, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Nadeem Kizilbash
- Department Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
6
|
Luff M, Evans L, Hiyari S, Kwan K, Cameron B, Miller A, St. John M, Alhiyari Y. Nigella sativa oil mitigates xerostomia and preserves salivary function in radiotherapy-treated mice. Laryngoscope Investig Otolaryngol 2023; 8:912-920. [PMID: 37621284 PMCID: PMC10446306 DOI: 10.1002/lio2.1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/17/2023] [Accepted: 07/08/2023] [Indexed: 08/26/2023] Open
Abstract
Objective This study aimed to assess if Nigella sativa oil (NSO), a health supplement containing thymoquinone as a major component, can act as a protective agent in salivary gland stem cells following radiotherapy (RT) damage. Methods Forty, 10-week-old, male C3H/HeJ mice were randomized to four experimental groups: sham RT + H2O gavage (control) (N = 4); 15 Gy RT + H2O gavage (N = 12); sham RT + NSO gavage (N = 12); and 15 Gy RT + NSO gavage (N = 12). Weight changes, saliva production, and salivary gland histopathologic staining were recorded for each group over the course of the experiment. Results All mice in the sham RT + H2O gavage and sham RT + NSO gavage groups demonstrated 100% 60-day survival. RT + H2O compared to RT + NSO gavaged mice were significantly underweight by an average of 6.4 g (p < .001). Salivary output showed significant decline in RT + H2O gavaged mice at days 3 and 16, whereas salivary output in RT + NSO during these same time periods was comparable to the control. At day 60, all mice that survived recovered salivary function regardless of their treatment arm. Salivary specimens from the RT + NSO gavage group demonstrated early signs of recovery of Kr 5+ salivary gland stem cells in both submandibular and sublingual glands at day 16 with complete recovery by day 60, marked by strong histopathologic staining, whereas the RT + H2O gavage group did not recover as effectively. Conclusion NSO may help preserve salivary function in mice treated with RT and may mitigate xerostomia by accelerating the recovery of salivary gland stem cells. Level of evidence Not applicable.
Collapse
Affiliation(s)
- Marie Luff
- Department of Head & Neck SurgeryDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesCaliforniaUSA
- David Geffen School of Medicine at University of California, Los AngelesLos AngelesCaliforniaUSA
| | - Lauran Evans
- Department of Head & Neck SurgeryDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesCaliforniaUSA
| | - Sarah Hiyari
- Jonsson Comprehensive Cancer CenterDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesCaliforniaUSA
| | - Kera Kwan
- Department of Head & Neck SurgeryDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesCaliforniaUSA
| | - Brian Cameron
- Department of Head & Neck SurgeryDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesCaliforniaUSA
| | - Amanda Miller
- Department of Head & Neck SurgeryDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesCaliforniaUSA
| | - Maie St. John
- Department of Head & Neck SurgeryDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesCaliforniaUSA
- Jonsson Comprehensive Cancer CenterDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesCaliforniaUSA
- UCLA Head and Neck Cancer ProgramDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesCaliforniaUSA
| | - Yazeed Alhiyari
- Department of Head & Neck SurgeryDavid Geffen School of Medicine, University of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
7
|
Alkhatib H, Doolaanea AA, Assadpour E, Mohmad Sabere AS, Mohamed F, Jafari SM. Optimizing the encapsulation of black seed oil into alginate beads by ionic gelation. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Khaikin E, Chrubasik-Hausmann S, Kaya S, Zimmermann BF. Screening of Thymoquinone Content in Commercial Nigella sativa Products to Identify a Promising and Safe Study Medication. Nutrients 2022; 14:3501. [PMID: 36079759 PMCID: PMC9460610 DOI: 10.3390/nu14173501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Thymoquinone (TQ) is the leading compound accounting for the pharmacological effects of Nigella sativa seed oil, also known as black seed oil. This study aimed to analyze the TQ content of commercial black seed oils and black seed oil-containing capsules to obtain information on the quality of the products and to find a promising and safe study medication for a putative clinical study. (2) Methods: Six black seed oils and five black seed oil-containing capsules were analyzed. TQ was quantified using a validated method consisting of a simple methanolic extraction and a fast HPLC-UV analysis. (3) Results: The TQ content varied from 3.08 to 809.4 mg/100 g (mean). The highest TQ content was found in a bottled oil, which might be considered for a clinical study. A dose of 4 mL of this oil per day contains 30 mg TQ, which is unlikely to be harmful. Based on the literature, a safe daily TQ dosage appears to be <48.6 mg per adult. (4) Conclusions: These findings suggest that black seed products should be regulated regarding TQ content to enable consumers to buy black seed food supplements of known content for the maintenance and improvement of health.
Collapse
Affiliation(s)
- Elisabeth Khaikin
- Institute of Nutritional and Food Sciences, Food Sciences, University of Bonn, Meckenheimer Allee 166a, 53115 Bonn, Germany
| | | | - Sebahat Kaya
- Department of Oral and Maxillofacial Surgery Plastic Surgery, University of Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Benno F. Zimmermann
- Institute of Nutritional and Food Sciences, Food Sciences, University of Bonn, Meckenheimer Allee 166a, 53115 Bonn, Germany
| |
Collapse
|
9
|
Adiwidjaja J, Sasongko L. Effect of Nigella sativa oil on pharmacokinetics and pharmacodynamics of gliclazide in rats. Biopharm Drug Dispos 2021; 42:359-371. [PMID: 34327715 DOI: 10.1002/bdd.2300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022]
Abstract
Nigella sativa oil (NSO) has been used widely for its putative anti-hyperglycemic activity. However, little is known about its potential effect on the pharmacokinetics and pharmacodynamics of antidiabetic drugs, including gliclazide. This study aimed to investigate herb-drug interactions between gliclazide and NSO in rats. Plasma concentrations of gliclazide (single oral and intravenous dose of 33 and 26.4 mg/kg, respectively) in the presence and absence of co-administration with NSO (52 mg/kg per oral) were quantified in healthy and insulin resistant rats (n = 5 for each group). Physiological and treatment-related factors were evaluated as potential influential covariates using a population pharmacokinetic modeling approach (NONMEM version 7.4). Clearance, volume of distribution and bioavailability of gliclazide were unaffected by disease state (healthy or insulin resistant). The concomitant administration of NSO resulted in higher systemic exposures of gliclazide by modulating bioavailability (29% increase) and clearance (20% decrease) of the drug. A model-independent analysis highlighted that pre-treatment with NSO in healthy rats was associated with a higher glucose lowering effect by up to 50% compared with that of gliclazide monotherapy, but not of insulin resistant rats. Although a similar trend in glucose reductions was not observed in insulin resistant rats, co-administration of NSO improved the sensitivity to insulin of this rat population. Natural product-drug interaction between gliclazide and NSO merits further evaluation of its clinical importance.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.,Sydney Pharmacy School, The University of Sydney, Sydney, Australia
| | - Lucy Sasongko
- School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|