1
|
Sakkal M, Arafat M, Yuvaraju P, Beiram R, AbuRuz S. Preparation and Characterization of Theophylline Controlled Release Matrix System Incorporating Poloxamer 407, Stearyl Alcohol, and Hydroxypropyl Methylcellulose: A Novel Formulation and Development Study. Polymers (Basel) 2024; 16:643. [PMID: 38475326 DOI: 10.3390/polym16050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Theophylline (THN), a bronchodilator with potential applications in emerging conditions like COVID-19, requires a controlled-release delivery system due to its narrow therapeutic range and short half-life. This need is particularly crucial as some existing formulations demonstrate impaired functionality. This study aims to develop a new 12-h controlled-release matrix system (CRMS) in the form of a capsule to optimize dosing intervals. METHODS CRMSs were developed using varying proportions of poloxamer 407 (P-407), stearyl alcohol (STA), and hydroxypropyl methylcellulose (HPMC) through the fusion technique. Their in vitro dissolution profiles were then compared with an FDA-approved THN drug across different pH media. The candidate formulation underwent characterization using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Additionally, a comprehensive stability study was conducted. RESULTS In vitro studies showed that adjusting the concentrations of excipients effectively controlled drug release. Notably, the CRMS formulation 15 (CRMS-F15), which was composed of 30% P-407, 30% STA, and 10% HPMC, closely matched the 12 h controlled-release profile of an FDA-approved drug across various pH media. Characterization techniques verified the successful dispersion of the drug within the matrix. Furthermore, CRMS-F15 maintained a consistent controlled drug release and demonstrated stability under a range of storage conditions. CONCLUSIONS The newly developed CRMS-F15 achieved a 12 h controlled release, comparable to its FDA-approved counterpart.
Collapse
Affiliation(s)
- Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Priya Yuvaraju
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
2
|
Sakkal M, Arafat M, Yuvaraju P, Beiram R, Ali L, Altarawneh M, Hajamohideen AR, AbuRuz S. Effect of Hydration Forms and Polymer Grades on Theophylline Controlled-Release Tablet: An Assessment and Evaluation. Pharmaceuticals (Basel) 2024; 17:271. [PMID: 38543057 PMCID: PMC10975561 DOI: 10.3390/ph17030271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND Drug release from controlled release delivery systems is influenced by various factors, including the polymer's grade and the drug's hydration form. This study aimed to investigate the impact of these factors on the controlled release of theophylline (THN). This research compares the monohydrate form found in branded products with the anhydrous form in generic equivalents, each formulated with different polymer grades. METHODS Quality control assessment was conducted alongside in vitro evaluation, complemented by various analytical techniques such as X-ray diffraction (XRD) and scanning electron microscopy (SEM). Additionally, thermal analyses using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were employed. RESULTS Quality control assessments demonstrated that the generic tablets exhibited lower average weight and resistance force compared to the branded ones. In vitro tests revealed that generic tablets released contents within 120 min, compared to 720 min for the branded counterpart. Characterization using XRD and SEM identified disparities in crystallinity and particle distribution between the three samples. Additionally, the thermal analysis indicated consistent endothermic peaks across all samples, albeit with minor variations in heat flow and decomposition temperatures between the two products. CONCLUSIONS This study demonstrated that variations in polymer grade and hydration form significantly impact THN release.
Collapse
Affiliation(s)
- Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.S.); (M.A.)
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.S.); (M.A.)
| | - Priya Yuvaraju
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Labeeb Ali
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, Al Ain P.O. Box 17666, United Arab Emirates
| | - Mohammednoor Altarawneh
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, Al Ain P.O. Box 17666, United Arab Emirates
| | | | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
3
|
Arafat M, Sakkal M, Bostanudin MF, Alhanbali OA, Yuvaraju P, Beiram R, Sadek B, Akour A, AbuRuz S. Enteric-coating film effect on the delayed drug release of pantoprazole gastro-resistant generic tablets. F1000Res 2023; 12:1325. [PMID: 38596002 PMCID: PMC11002526 DOI: 10.12688/f1000research.140607.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 04/11/2024] Open
Abstract
Background: Enteric coating films in acidic labile tablets protect the drug molecule from the acidic environment of the stomach. However, variations in the excipients used in the coating formulation may affect their ability to provide adequate protection. This study is the first to investigate the potential effects of coating materials on the protective functionality of enteric coating films for pantoprazole (PNZ) generic tablets after their recall from the market. Methods: A comparative analysis was conducted between generic and branded PNZ products, using pure drug powder for identification. The in vitro release of the drug was evaluated in different pH media. The study also utilized various analytical and thermal techniques, including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and confocal Raman microscopy. Results: The in vitro assessment results revealed significant variations in the release profile for the generic product in acidic media at 120 min. DSC and TGA thermal profile analyses showed slight variation between the two products. XRD analysis exhibited a noticeable difference in peak intensity for the generic sample, while SEM revealed smaller particle sizes in the generic product. The obtained spectra profile for the generic product displayed significant variation in peaks and band intensity, possibly due to impurities. These findings suggest that the excipients used in the enteric coating film of the generic product may have affected its protective functionality, leading to premature drug release in acidic media. Additionally, the presence of polysorbate 80 (P-80) in the brand product might improve the properties of the enteric coating film due to its multi-functionality. Conclusions: In conclusion, the excipients used in the brand product demonstrated superior functionality in effectively protecting the drug molecule from acidic media through the enteric coating film, as compared to the generic version.
Collapse
Affiliation(s)
- Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, 64141, United Arab Emirates
| | - Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, 64141, United Arab Emirates
| | | | - Othman Abdulrahim Alhanbali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestinian Territory
| | - Priya Yuvaraju
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, 17666, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, 17666, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, 17666, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, 17666, United Arab Emirates
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Amman Governorate, 11942, Jordan
| |
Collapse
|
4
|
Arafat M, Sakkal M, Yuvaraju P, Esmaeil A, Poulose V, Aburuz S. Effect of Excipients on the Quality of Drug Formulation and Immediate Release of Generic Metformin HCl Tablets. Pharmaceuticals (Basel) 2023; 16:ph16040539. [PMID: 37111296 PMCID: PMC10146418 DOI: 10.3390/ph16040539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Generic medications are bioequivalent to brand-name medications, but the quality and purity of generic medications are still debatable. The aim of this study was to compare the generic product of metformin (MET) to its branded counterpart using pure MET powder as a reference. Quality control tablet assessment and in vitro evaluation of drug release were carried out in various pH media. Additionally, several analytical methods and thermal techniques were used, namely differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and confocal Raman microscopy. The results showed a significant difference between the two products. In terms of friability assessment, mean resistance force, and tablet disintegration, the generic MET product showed significant weight loss, higher mean resistance force, longer disintegration time, and a slower rate of drug release. In addition, DSC and TGA showed that the generic product had the lowest melting point and the least weight loss compared to the branded product and pure powder. XRD and SEM demonstrated some changes in the crystallinity structure of the molecule particles for the generic product. Additionally, FTIR and confocal Raman revealed the same peaks and band shifts in all samples, but with differences in the intensity for the generic tablet only. The observed differences could be due to the use of different excipients in the generic product. The possibility of forming a eutectic mixture between the polymeric excipient and metformin in the generic tablet was presumed, which might be attributed to alterations in the physicochemical properties of the drug molecule in the generic product. In conclusion, using different excipients might have a significant effect on the physicochemical properties of drugs in generic formulations, leading to significant changes in drug release behavior.
Collapse
Affiliation(s)
- Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Priya Yuvaraju
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Anna Esmaeil
- Pharmalink and Medicina Group of Pharmacies, Abu Dhabi P.O. Box 41412, United Arab Emirates
| | - Vijo Poulose
- Department of Chemistry, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Salahdein Aburuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
5
|
Zewail MB, F Asaad G, Swellam SM, Abd-Allah SM, K Hosny S, Sallah SK, E Eissa J, S Mohamed S, El-Dakroury WA. Design, characterization and in vivo performance of solid lipid nanoparticles (SLNs)-loaded mucoadhesive buccal tablets for efficient delivery of Lornoxicam in experimental inflammation. Int J Pharm 2022; 624:122006. [PMID: 35820515 DOI: 10.1016/j.ijpharm.2022.122006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 12/27/2022]
Abstract
Lornoxicam (LRX) is a potent nonsteroidal anti-inflammatory drug (NSAID) used extensively to manage pain and inflammatory conditions. However, the drug possesses poor aqueous solubility (i.e., BCS class II) and a short half-life (3-4 h). Mucoadhesive buccal tablets containing LRX -loaded solid lipid nanoparticles (SLNs) were developed to enhance the drug solubility and bioavailability and achieve a controlled release pattern for a better anti-inflammatory effect. Different LRX-loaded SLNs were prepared using the hot homogenization /ultra-sonication technique and evaluated using size analysis and entrapment efficiency (EE%). Optimized LRX -loaded SLNs formulation showed particle size of 216 ± 7.4 nm, zeta potential of -27.3 ± 4.6 mV, and entrapment efficiency of 92.56 ± 2.3 %. Dried LRX-loaded SLNs alongside mucoadhesive polymers blend (PVP K30 /HPMC K15) were compressed to prepare the mucoadhesive buccal tablets. The tablets showed proper physicochemical properties, good mucoadhesive strength, long mucoadhesive time, suitable pH surface, good swelling capacity, and controlled drug release profile. Furthermore, Fourier transform-infrared (FTIR) spectroscopy, Powder X-Ray diffraction (PXRD), and Scanning electron microscopy (SEM) studies were carried out. The in vivo anti-inflammatory effect of pure LRX, market LRX and optimized mucoadhesive buccal tablet of LRX -loaded SLNs (T3) against carrageenan-induced models were evaluated. T3 showed a significant and early anti-inflammatory response after 1 and 2 h (63.62-77.84 % inhibition) as well as an extended effect after 4 h as compared to pure and market LRX. In parallel, T3 showed the best amelioration of PGE2, COX2, and TNF-α serum levels after 4 h of carrageenan injection.
Collapse
Affiliation(s)
- Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Salma M Swellam
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sama M Abd-Allah
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sahar K Hosny
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Salma K Sallah
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Jehan E Eissa
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Salma S Mohamed
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
6
|
Bostanudin MF, Arafat M, Tan SF, Sarker MZI. Investigations of pectin nanostructures for enhanced percutaneous delivery of fusidic acid. J Appl Polym Sci 2022. [DOI: 10.1002/app.52760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohammad F. Bostanudin
- College of Pharmacy Al Ain University Abu Dhabi United Arab Emirates
- AAU Health and Biomedical Research Center Al Ain University Abu Dhabi United Arab Emirates
| | - Mosab Arafat
- College of Pharmacy Al Ain University Abu Dhabi United Arab Emirates
- AAU Health and Biomedical Research Center Al Ain University Abu Dhabi United Arab Emirates
| | - Suk Fei Tan
- School of Pharmacy Management and Science University Shah Alam Malaysia
| | - Md Zaidul I. Sarker
- Cooperative Research, Extension & Education Northern Marianas College Saipan Northern Mariana Islands USA
| |
Collapse
|
7
|
Pettinau F, Manca I, Manca I, Pittau B. Rapid Approach for Pharmaceutical Quality Evaluation and Comparison. ChemistrySelect 2022. [DOI: 10.1002/slct.202200712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Francesca Pettinau
- Institute of Translational Pharmacology National Research Council 09010 Pula CA Italy
| | - Ilaria Manca
- Institute of Translational Pharmacology National Research Council 09010 Pula CA Italy
| | - Ilaria Manca
- Institute of Translational Pharmacology National Research Council 09010 Pula CA Italy
| | - Barbara Pittau
- Institute of Translational Pharmacology National Research Council 09010 Pula CA Italy
| |
Collapse
|
8
|
Amphiphilic Alkylated Pectin Hydrogels for Enhanced Topical Delivery of Fusidic Acid: Formulation and In Vitro Investigation. Sci Pharm 2022. [DOI: 10.3390/scipharm90010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Hydrogels constructed of amphiphilically modified polysaccharides have attracted a lot of interest because of their potential to augment drug diffusion over the skin. This research describes the synthesis of amphiphilic alkylated pectin via glycidyl tert-butyl ether modification (alkylation degree 15.7%), which was characterized using spectroscopic and thermal analysis techniques and then formulated into hydrogels for the study of their potential in regulating fusidic acid diffusion topically. The hydrogels were formulated by the ionic interaction of negatively charged pectin and positively charged crosslinker CaCl2, with a reported fusidic acid loading degree of 93–95%. Hydrogels made of alkylated pectin showed a lower swelling percentage than that of native pectin, resulting in a slower fusidic acid release. The influence of pH on the swelling percentage and drug release was also investigated, with results revealing that greater pH enhanced swelling percentage and drug release. The in vitro interactions with HaCaT cells revealed negligible cytotoxicity under application-relevant settings. Utilizing Franz diffusion cells, the alkylated pectin hydrogels caused fusidic acid to penetrate the Strat-M® membrane at a 1.5-fold higher rate than the native pectin hydrogels. Overall, the in vitro results showed that alkylated pectin hydrogels have a lot of promise for topical distribution, which needs further investigation.
Collapse
|
9
|
Arafat M, Sarfraz M, Bostanudin MF, Esmaeil A, Salam A, AbuRuz S. In Vitro and In Vivo Evaluation of Oral Controlled Release Formulation of BCS Class I Drug Using Polymer Matrix System. Pharmaceuticals (Basel) 2021; 14:929. [PMID: 34577629 PMCID: PMC8470007 DOI: 10.3390/ph14090929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Diltiazem hydrochloride is a calcium channel blocker, which belongs to the family of benzothiazepines. It is commonly used to treat hypertension and atrial fibrillation. Even though the drug has high solubility, its high permeability and rapid metabolism in the liver can limit the bioavailability and increase the dose frequencies for up to four times per day. This study focused on a polymer matrix system not only to control the drug release but also to prolong the duration of bioavailability. The polymer matrices were prepared using different ratios of poloxamer-188, hydroxypropyl methylcellulose, and stearyl alcohol. In vitro and in vivo assessments took place using 24 rabbits and the results were compared to commercially available product Tildiem® (60 mg tablet) as reference. Overall, the rate of drug release was sustained with the gradual increase of poloxamer-188 incorporated with hydroxypropyl methylcellulose and stearyl alcohol in the matrix system, achieving a maximum release period of 10 h. The oral bioavailability and pharmacokinetic parameters of diltiazem hydrochloride incorporated in polymer matrix system were similar to commercial reference Tildiem®. In conclusion, the combination of polymers can have a substantial effect on controlling and prolonging the drug release pattern. The outcomes showed that poloxamer-188 combined with hydroxypropyl methylcellulose and stearyl alcohol is a powerful matrix system for controlling release of diltiazem hydrochloride.
Collapse
Affiliation(s)
- Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.); (M.S.); (M.F.B.); (A.E.); (A.S.)
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.); (M.S.); (M.F.B.); (A.E.); (A.S.)
| | - Mohammad F. Bostanudin
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.); (M.S.); (M.F.B.); (A.E.); (A.S.)
| | - Anna Esmaeil
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.); (M.S.); (M.F.B.); (A.E.); (A.S.)
| | - Aisha Salam
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.); (M.S.); (M.F.B.); (A.E.); (A.S.)
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
10
|
Development and In Vitro Evaluation of Controlled Release Viagra ® Containing Poloxamer-188 Using Gastroplus ™ PBPK Modeling Software for In Vivo Predictions and Pharmacokinetic Assessments. Pharmaceuticals (Basel) 2021; 14:ph14050479. [PMID: 34070160 PMCID: PMC8158482 DOI: 10.3390/ph14050479] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Sildenafil is the active substance in Viagra® tablets, which is approved by the FDA to treat sexual dysfunction in men. Poor solubility and short half-life, however, can limit the span of its effectiveness. Therefore, this study focused on an oral controlled release matrix system with the aim to improve solubility, control the drug release, and sustain the duration of drug activity. The controlled release matrices were prepared with poloxamer-188, hydroxypropyl methylcellulose, and magnesium stearate. Various formulations of different ratios were developed, evaluated in vitro, and assessed in silico. Poloxamer-188 appeared to have a remarkable influence on the release profile of sildenafil citrate. In general, the rate of drug release decreased as the amount of polymer was gradually increased in the matrix system, achieving a maximum release period over 12 h. The in silico assessment by using the GastroPlus™ PBPK modeling software predicted a significant variation in Cmax, tmax, t1/2, and AUC0-t among the formulations. In conclusion, the combination of polymers in matrix systems can have substantial impact on controlling and modifying the drug release pattern.
Collapse
|