1
|
Bao S, Lee HH, Yang Q, Remedios LW, Deng R, Cui C, Cai LY, Xu K, Yu X, Chiron S, Li Y, Patterson NH, Wang Y, Li J, Liu Q, Lau KS, Roland JT, Coburn LA, Wilson KT, Landman BA, Huo Y. Alleviating tiling effect by random walk sliding window in high-resolution histological whole slide image synthesis. PROCEEDINGS OF MACHINE LEARNING RESEARCH 2024; 227:1406-1422. [PMID: 38993526 PMCID: PMC11238901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Multiplex immunofluorescence (MxIF) is an advanced molecular imaging technique that can simultaneously provide biologists with multiple (i.e., more than 20) molecular markers on a single histological tissue section. Unfortunately, due to imaging restrictions, the more routinely used hematoxylin and eosin (H&E) stain is typically unavailable with MxIF on the same tissue section. As biological H&E staining is not feasible, previous efforts have been made to obtain H&E whole slide image (WSI) from MxIF via deep learning empowered virtual staining. However, the tiling effect is a long-lasting problem in high-resolution WSI-wise synthesis. The MxIF to H&E synthesis is no exception. Limited by computational resources, the cross-stain image synthesis is typically performed at the patch-level. Thus, discontinuous intensities might be visually identified along with the patch boundaries assembling all individual patches back to a WSI. In this work, we propose a deep learning based unpaired high-resolution image synthesis method to obtain virtual H&E WSIs from MxIF WSIs (each with 27 markers/stains) with reduced tiling effects. Briefly, we first extend the CycleGAN framework by adding simultaneous nuclei and mucin segmentation supervision as spatial constraints. Then, we introduce a random walk sliding window shifting strategy during the optimized inference stage, to alleviate the tiling effects. The validation results show that our spatially constrained synthesis method achieves a 56% performance gain for the downstream cell segmentation task. The proposed inference method reduces the tiling effects by using 50% fewer computation resources without compromising performance. The proposed random sliding window inference method is a plug-and-play module, which can be generalized for other high-resolution WSI image synthesis applications. The source code with our proposed model are available at https://github.com/MASILab/RandomWalkSlidingWindow.git.
Collapse
Affiliation(s)
- Shunxing Bao
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ho Hin Lee
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Qi Yang
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Lucas W Remedios
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Ruining Deng
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Can Cui
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kaiwen Xu
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Xin Yu
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Sophie Chiron
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yike Li
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Yaohong Wang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jia Li
- Dept. of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Liu
- Dept. of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S Lau
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Dept. of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Mucosal Inflammation and Cancer, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Mucosal Inflammation and Cancer, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bennett A Landman
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yuankai Huo
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Yayon N, Kedlian VR, Boehme L, Suo C, Wachter B, Beuschel RT, Amsalem O, Polanski K, Koplev S, Tuck E, Dann E, Van Hulle J, Perera S, Putteman T, Predeus AV, Dabrowska M, Richardson L, Tudor C, Kreins AY, Engelbert J, Stephenson E, Kleshchevnikov V, De Rita F, Crossland D, Bosticardo M, Pala F, Prigmore E, Chipampe NJ, Prete M, Fei L, To K, Barker RA, He X, Van Nieuwerburgh F, Bayraktar O, Patel M, Davies GE, Haniffa MA, Uhlmann V, Notarangelo LD, Germain RN, Radtke AJ, Marioni JC, Taghon T, Teichmann SA. A spatial human thymus cell atlas mapped to a continuous tissue axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.562925. [PMID: 37986877 PMCID: PMC10659407 DOI: 10.1101/2023.10.25.562925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
T cells develop from circulating precursors, which enter the thymus and migrate throughout specialised sub-compartments to support maturation and selection. This process starts already in early fetal development and is highly active until the involution of the thymus in adolescence. To map the micro-anatomical underpinnings of this process in pre- vs. post-natal states, we undertook a spatially resolved analysis and established a new quantitative morphological framework for the thymus, the Cortico-Medullary Axis. Using this axis in conjunction with the curation of a multimodal single-cell, spatial transcriptomics and high-resolution multiplex imaging atlas, we show that canonical thymocyte trajectories and thymic epithelial cells are highly organised and fully established by post-conception week 12, pinpoint TEC progenitor states, find that TEC subsets and peripheral tissue genes are associated with Hassall's Corpuscles and uncover divergence in the pace and drivers of medullary entry between CD4 vs. CD8 T cell lineages. These findings are complemented with a holistic toolkit for spatial analysis and annotation, providing a basis for a detailed understanding of T lymphocyte development.
Collapse
Affiliation(s)
- Nadav Yayon
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | | | - Lena Boehme
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | - Chenqu Suo
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Brianna Wachter
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Rebecca T Beuschel
- National Institute of Allergy and Infectious Diseases, NIH, Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Bethesda, MD, United States
| | - Oren Amsalem
- Beth Israel Deaconess Medical Center, Harvard Medical School, Division of Endocrinology, Diabetes and Metabolism, Boston, MA, United States
| | | | - Simon Koplev
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Emma Dann
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Jolien Van Hulle
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | - Shani Perera
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Tom Putteman
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | | | - Monika Dabrowska
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Laura Richardson
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Catherine Tudor
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Alexandra Y Kreins
- Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Immunology and Gene Therapy, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, London, United Kingdom
| | - Justin Engelbert
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Emily Stephenson
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | | | - Fabrizio De Rita
- Freeman Hospital, Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Newcastle upon Tyne, United Kingdom
| | - David Crossland
- Freeman Hospital, Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Newcastle upon Tyne, United Kingdom
| | - Marita Bosticardo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Francesca Pala
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Elena Prigmore
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | | | - Martin Prete
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Lijiang Fei
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Ken To
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Roger A Barker
- University of Cambridge, John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Xiaoling He
- University of Cambridge, John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Filip Van Nieuwerburgh
- Ghent University, Laboratory of Pharmaceutical Biotechnology, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Omer Bayraktar
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Minal Patel
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
| | - Graham E Davies
- Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Immunology and Gene Therapy, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, London, United Kingdom
| | - Muzlifah A Haniffa
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
- Newcastle University, Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Virginie Uhlmann
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Luigi D Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, Bethesda, MD, United States
| | - Ronald N Germain
- National Institute of Allergy and Infectious Diseases, NIH, Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Bethesda, MD, United States
| | - Andrea J Radtke
- National Institute of Allergy and Infectious Diseases, NIH, Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Bethesda, MD, United States
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
- University of Cambridge, Cancer Research UK, Cambridge, United Kingdom
| | - Tom Taghon
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cellular Genetics, Cambridge, United Kingdom
- University of Cambridge, Cavendish Laboratory, Cambridge, United Kingdom
| |
Collapse
|
3
|
Krieger KL, Mann EK, Lee KJ, Bolterstein E, Jebakumar D, Ittmann MM, Dal Zotto VL, Shaban M, Sreekumar A, Gassman NR. Spatial mapping of the DNA adducts in cancer. DNA Repair (Amst) 2023; 128:103529. [PMID: 37390674 PMCID: PMC10330576 DOI: 10.1016/j.dnarep.2023.103529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
DNA adducts and strand breaks are induced by various exogenous and endogenous agents. Accumulation of DNA damage is implicated in many disease processes, including cancer, aging, and neurodegeneration. The continuous acquisition of DNA damage from exogenous and endogenous stressors coupled with defects in DNA repair pathways contribute to the accumulation of DNA damage within the genome and genomic instability. While mutational burden offers some insight into the level of DNA damage a cell may have experienced and subsequently repaired, it does not quantify DNA adducts and strand breaks. Mutational burden also infers the identity of the DNA damage. With advances in DNA adduct detection and quantification methods, there is an opportunity to identify DNA adducts driving mutagenesis and correlate with a known exposome. However, most DNA adduct detection methods require isolation or separation of the DNA and its adducts from the context of the nuclei. Mass spectrometry, comet assays, and other techniques precisely quantify lesion types but lose the nuclear context and even tissue context of the DNA damage. The growth in spatial analysis technologies offers a novel opportunity to leverage DNA damage detection with nuclear and tissue context. However, we lack a wealth of techniques capable of detecting DNA damage in situ. Here, we review the limited existing in situ DNA damage detection methods and examine their potential to offer spatial analysis of DNA adducts in tumors or other tissues. We also offer a perspective on the need for spatial analysis of DNA damage in situ and highlight Repair Assisted Damage Detection (RADD) as an in situ DNA adduct technique with the potential to integrate with spatial analysis and the challenges to be addressed.
Collapse
Affiliation(s)
- Kimiko L Krieger
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA
| | - Elise K Mann
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Kevin J Lee
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Elyse Bolterstein
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Deborah Jebakumar
- Department of Anatomic Pathology, Baylor Scott & White Medical Center, Temple, TX 76508, USA; Texas A&M College of Medicine, Temple, TX 76508, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Human Tissue Acquisition & Pathology Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valeria L Dal Zotto
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Mohamed Shaban
- Department of Electrical and Computer Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Metabolism and Health Disparities (C-TMH), Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natalie R Gassman
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Simonson PD, Valencia I, Patel SS. Tyramide-conjugated DNA barcodes enable signal amplification for multiparametric CODEX imaging. Commun Biol 2022; 5:627. [PMID: 35754060 PMCID: PMC9234042 DOI: 10.1038/s42003-022-03558-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/06/2022] [Indexed: 01/09/2023] Open
Abstract
Multiparametric imaging allows researchers to measure the expression of many biomarkers simultaneously, allowing detailed characterization of cell microenvironments. One such technique, CODEX, allows fluorescence imaging of >30 proteins in a single tissue section. In the commercial CODEX system, primary antibodies are conjugated to DNA barcodes. This modification can result in antibody dysfunction, and development of a custom antibody panel can be very costly and time consuming as trial and error of modified antibodies proceeds. To address these challenges, we developed novel tyramide-conjugated DNA barcodes that can be used with primary antibodies via peroxidase-conjugated secondary antibodies. This approach results in signal amplification and imaging without the need to conjugate primary antibodies. When combined with commercially available barcode-conjugated primary antibodies, we can very quickly develop working antibody panels. We also present methods to perform antibody staining using a commercially available automated tissue stainer and in situ hybridization imaging on a CODEX platform. Future work will include application of the combined tyramide-based and regular CODEX approach to image specific tumors with their immune cell infiltrates, including biomarkers that are currently difficult to image by regular CODEX.
Collapse
Affiliation(s)
- Paul D Simonson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Itzel Valencia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sanjay S Patel
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|