1
|
Haferlach T, Walter W. Challenging gold standard hematology diagnostics through the introduction of whole genome sequencing and artificial intelligence. Int J Lab Hematol 2023; 45:156-162. [PMID: 36737231 DOI: 10.1111/ijlh.14033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The diagnosis of hematological malignancies is rather complex and requires the application of a plethora of different assays, techniques and methodologies. Some of the methods, like cytomorphology, have been in use for decades, while other methods, such as next-generation sequencing or even whole genome sequencing (WGS), are relatively new. The application of the methods and the evaluation of the results require distinct skills and knowledge and place different demands on the practitioner. However, even with experienced hematologists, diagnostic ambiguity remains a regular occurrence and the comprehensive analysis of high-dimensional WGS data soon exceeds any human's capacity. Hence, in order to reduce inter-observer variability and to improve the timeliness and accuracy of diagnoses, machine learning based approaches have been developed to assist in the decision making process. Moreover, to achieve the goal of precision oncology, comprehensive genomic profiling is increasingly being incorporated into routine standard of care.
Collapse
|
2
|
Lin E, Fuda F, Luu HS, Cox AM, Fang F, Feng J, Chen M. Digital pathology and artificial intelligence as the next chapter in diagnostic hematopathology. Semin Diagn Pathol 2023; 40:88-94. [PMID: 36801182 DOI: 10.1053/j.semdp.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Digital pathology has a crucial role in diagnostic pathology and is increasingly a technological requirement in the field. Integration of digital slides into the pathology workflow, advanced algorithms, and computer-aided diagnostic techniques extend the frontiers of the pathologist's view beyond the microscopic slide and enable true integration of knowledge and expertise. There is clear potential for artificial intelligence (AI) breakthroughs in pathology and hematopathology. In this review article, we discuss the approach of using machine learning in the diagnosis, classification, and treatment guidelines of hematolymphoid disease, as well as recent progress of artificial intelligence in flow cytometric analysis of hematolymphoid diseases. We review these topics specifically through the potential clinical applications of CellaVision, an automated digital image analyzer of peripheral blood, and Morphogo, a novel artificial intelligence-based bone marrow analyzing system. Adoption of these new technologies will allow pathologists to streamline workflow and achieve faster turnaround time in diagnosing hematological disease.
Collapse
Affiliation(s)
- Elisa Lin
- Department of Pathology and Laboratory Medicine, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Franklin Fuda
- Department of Pathology and Laboratory Medicine, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Hung S Luu
- Department of Pathology and Laboratory Medicine, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Andrew M Cox
- Cell & Molecular Biology
- Luda Hill Department of Bioinformatics, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America
| | - Fengqi Fang
- Department of Oncology, The First Hospital of Dalian Medical University, Dalian, China
| | - Junlin Feng
- Division of Medical Technology Development, Hangzhou Zhiwei Information & Technology Ltd., Hangzhou, China
| | - Mingyi Chen
- Department of Pathology and Laboratory Medicine, University of Texas, Southwestern Medical Center, Dallas, Texas, United States of America.
| |
Collapse
|
3
|
Fuda F, Chen M, Chen W, Cox A. Artificial intelligence in clinical multiparameter flow cytometry and mass cytometry-key tools and progress. Semin Diagn Pathol 2023; 40:120-128. [PMID: 36894355 DOI: 10.1053/j.semdp.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
There are many research studies and emerging tools using artificial intelligence (AI) and machine learning to augment flow and mass cytometry workflows. Emerging AI tools can quickly identify common cell populations with continuous improvement of accuracy, uncover patterns in high-dimensional cytometric data that are undetectable by human analysis, facilitate the discovery of cell subpopulations, perform semi-automated immune cell profiling, and demonstrate potential to automate aspects of clinical multiparameter flow cytometric (MFC) diagnostic workflow. Utilizing AI in the analysis of cytometry samples can reduce subjective variability and assist in breakthroughs in understanding diseases. Here we review the diverse types of AI that are being applied to clinical cytometry data and how AI is driving advances in data analysis to improve diagnostic sensitivity and accuracy. We review supervised and unsupervised clustering algorithms for cell population identification, various dimensionality reduction techniques, and their utilities in visualization and machine learning pipelines, and supervised learning approaches for classifying entire cytometry samples.Understanding the AI landscape will enable pathologists to better utilize open source and commercially available tools, plan exploratory research projects to characterize diseases, and work with machine learning and data scientists to implement clinical data analysis pipelines.
Collapse
Affiliation(s)
- Franklin Fuda
- Department of Pathology and Laboratory Medicine, University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | - Mingyi Chen
- Department of Pathology and Laboratory Medicine, University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | - Weina Chen
- Department of Pathology and Laboratory Medicine, University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew Cox
- Lyda Hill Department of Bioinformatics, University of Texas, Southwestern Medical Center, Dallas, Texas, USA; Department of Cell and Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
4
|
Walter W, Pohlkamp C, Meggendorfer M, Nadarajah N, Kern W, Haferlach C, Haferlach T. Artificial intelligence in hematological diagnostics: Game changer or gadget? Blood Rev 2023; 58:101019. [PMID: 36241586 DOI: 10.1016/j.blre.2022.101019] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
Abstract
The future of clinical diagnosis and treatment of hematologic diseases will inevitably involve the integration of artificial intelligence (AI)-based systems into routine practice to support the hematologists' decision making. Several studies have shown that AI-based models can already be used to automatically differentiate cells, reliably detect malignant cell populations, support chromosome banding analysis, and interpret clinical variants, contributing to early disease detection and prognosis. However, even the best tool can become useless if it is misapplied or the results are misinterpreted. Therefore, in order to comprehensively judge and correctly apply newly developed AI-based systems, the hematologist must have a basic understanding of the general concepts of machine learning. In this review, we provide the hematologist with a comprehensive overview of various machine learning techniques, their current implementations and approaches in different diagnostic subfields (e.g., cytogenetics, molecular genetics), and the limitations and unresolved challenges of the systems.
Collapse
Affiliation(s)
- Wencke Walter
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| | - Christian Pohlkamp
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| | - Manja Meggendorfer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| | - Niroshan Nadarajah
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| | - Wolfgang Kern
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| | - Claudia Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 München, Germany.
| |
Collapse
|
5
|
Walter W, Haferlach C, Nadarajah N, Schmidts I, Kühn C, Kern W, Haferlach T. How artificial intelligence might disrupt diagnostics in hematology in the near future. Oncogene 2021; 40:4271-4280. [PMID: 34103684 PMCID: PMC8225509 DOI: 10.1038/s41388-021-01861-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Artificial intelligence (AI) is about to make itself indispensable in the health care sector. Examples of successful applications or promising approaches range from the application of pattern recognition software to pre-process and analyze digital medical images, to deep learning algorithms for subtype or disease classification, and digital twin technology and in silico clinical trials. Moreover, machine-learning techniques are used to identify patterns and anomalies in electronic health records and to perform ad-hoc evaluations of gathered data from wearable health tracking devices for deep longitudinal phenotyping. In the last years, substantial progress has been made in automated image classification, reaching even superhuman level in some instances. Despite the increasing awareness of the importance of the genetic context, the diagnosis in hematology is still mainly based on the evaluation of the phenotype. Either by the analysis of microscopic images of cells in cytomorphology or by the analysis of cell populations in bidimensional plots obtained by flow cytometry. Here, AI algorithms not only spot details that might escape the human eye, but might also identify entirely new ways of interpreting these images. With the introduction of high-throughput next-generation sequencing in molecular genetics, the amount of available information is increasing exponentially, priming the field for the application of machine learning approaches. The goal of all the approaches is to allow personalized and informed interventions, to enhance treatment success, to improve the timeliness and accuracy of diagnoses, and to minimize technically induced misclassifications. The potential of AI-based applications is virtually endless but where do we stand in hematology and how far can we go?
Collapse
|
6
|
Elkhader J, Elemento O. Artificial intelligence in oncology: From bench to clinic. Semin Cancer Biol 2021; 84:113-128. [PMID: 33915289 DOI: 10.1016/j.semcancer.2021.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
In the past few years, Artificial Intelligence (AI) techniques have been applied to almost every facet of oncology, from basic research to drug development and clinical care. In the clinical arena where AI has perhaps received the most attention, AI is showing promise in enhancing and automating image-based diagnostic approaches in fields such as radiology and pathology. Robust AI applications, which retain high performance and reproducibility over multiple datasets, extend from predicting indications for drug development to improving clinical decision support using electronic health record data. In this article, we review some of these advances. We also introduce common concepts and fundamentals of AI and its various uses, along with its caveats, to provide an overview of the opportunities and challenges in the field of oncology. Leveraging AI techniques productively to provide better care throughout a patient's medical journey can fuel the predictive promise of precision medicine.
Collapse
Affiliation(s)
- Jamal Elkhader
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Dept. of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, 10065, USA
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Dept. of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, 10065, USA.
| |
Collapse
|
7
|
Eckardt JN, Bornhäuser M, Wendt K, Middeke JM. Application of machine learning in the management of acute myeloid leukemia: current practice and future prospects. Blood Adv 2020; 4:6077-6085. [PMID: 33290546 PMCID: PMC7724910 DOI: 10.1182/bloodadvances.2020002997] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Machine learning (ML) is rapidly emerging in several fields of cancer research. ML algorithms can deal with vast amounts of medical data and provide a better understanding of malignant disease. Its ability to process information from different diagnostic modalities and functions to predict prognosis and suggest therapeutic strategies indicates that ML is a promising tool for the future management of hematologic malignancies; acute myeloid leukemia (AML) is a model disease of various recent studies. An integration of these ML techniques into various applications in AML management can assure fast and accurate diagnosis as well as precise risk stratification and optimal therapy. Nevertheless, these techniques come with various pitfalls and need a strict regulatory framework to ensure safe use of ML. This comprehensive review highlights and discusses recent advances in ML techniques in the management of AML as a model disease of hematologic neoplasms, enabling researchers and clinicians alike to critically evaluate this upcoming, potentially practice-changing technology.
Collapse
Affiliation(s)
- Jan-Niklas Eckardt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- National Center for Tumor Diseases, Dresden (NCT/UCC), Dresden, Germany
- German Consortium for Translational Cancer Research, DKFZ, Heidelberg, Germany; and
| | - Karsten Wendt
- Institute of Circuits and Systems, Technical University Dresden, Dresden, Germany
| | - Jan Moritz Middeke
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
8
|
Gaidano V, Tenace V, Santoro N, Varvello S, Cignetti A, Prato G, Saglio G, De Rosa G, Geuna M. A Clinically Applicable Approach to the Classification of B-Cell Non-Hodgkin Lymphomas with Flow Cytometry and Machine Learning. Cancers (Basel) 2020; 12:cancers12061684. [PMID: 32599959 PMCID: PMC7352227 DOI: 10.3390/cancers12061684] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
The immunophenotype is a key element to classify B-cell Non-Hodgkin Lymphomas (B-NHL); while it is routinely obtained through immunohistochemistry, the use of flow cytometry (FC) could bear several advantages. However, few FC laboratories can rely on a long-standing practical experience, and the literature in support is still limited; as a result, the use of FC is generally restricted to the analysis of lymphomas with bone marrow or peripheral blood involvement. In this work, we applied machine learning to our database of 1465 B-NHL samples from different sources, building four artificial predictive systems which could classify B-NHL in up to nine of the most common clinico-pathological entities. Our best model shows an overall accuracy of 92.68%, a mean sensitivity of 88.54% and a mean specificity of 98.77%. Beyond the clinical applicability, our models demonstrate (i) the strong discriminatory power of MIB1 and Bcl2, whose integration in the predictive model significantly increased the performance of the algorithm; (ii) the potential usefulness of some non-canonical markers in categorizing B-NHL; and (iii) that FC markers should not be described as strictly positive or negative according to fixed thresholds, but they rather correlate with different B-NHL depending on their level of expression.
Collapse
Affiliation(s)
- Valentina Gaidano
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (V.G.); (G.S.)
- Division of Hematology, A.O. SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Valerio Tenace
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: (V.T.); (M.G.)
| | - Nathalie Santoro
- Laboratory of Immunopathology, Division of Pathology, A.O. Ordine Mauriziano, 10128 Turin, Italy; (N.S.); (G.D.R.)
| | - Silvia Varvello
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, 10128 Turin, Italy; (S.V.); (A.C.)
| | - Alessandro Cignetti
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, 10128 Turin, Italy; (S.V.); (A.C.)
| | - Giuseppina Prato
- Division of Pathology, San Lazzaro Hospital, ASL CN2, 12051 Alba, Italy;
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (V.G.); (G.S.)
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, 10128 Turin, Italy; (S.V.); (A.C.)
| | - Giovanni De Rosa
- Laboratory of Immunopathology, Division of Pathology, A.O. Ordine Mauriziano, 10128 Turin, Italy; (N.S.); (G.D.R.)
| | - Massimo Geuna
- Laboratory of Immunopathology, Division of Pathology, A.O. Ordine Mauriziano, 10128 Turin, Italy; (N.S.); (G.D.R.)
- Correspondence: (V.T.); (M.G.)
| |
Collapse
|