1
|
Tenkumo T, Koide R, Ogawa T, Yamaguchi H, Suzuki S, Miyashita M, Nakamura K, Wang H, Yoda N, Sasaki K. A triple growth factor strategy for optimizing bone augmentation in mice. J Biomed Mater Res B Appl Biomater 2024; 112:e35447. [PMID: 38997799 DOI: 10.1002/jbm.b.35447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/07/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
With dental implant treatment becoming the gold standard, the need for effective bone augmentation prior to implantation has grown. This study aims to evaluate a bone augmentation strategy integrating three key growth factors: bone morphogenetic protein-2 (BMP-2), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF). Collagen scaffolds incorporating BMP-2, IGF-1, or VEGF were fabricated and categorized into five groups based on their content: scaffold alone; BMP-2 alone (BMP-2); BMP-2 and IGF-1 (BI); BMP-2, IGF-1, and VEGF (BIV); and BMP-2 and IGF-1 with an earlier release of VEGF (BI + V). The prepared scaffolds were surgically implanted into the calvarias of C57BL/6JJcl mice, and hard tissue formation was assessed after 10 and 28 days through histological, tomographic, and biochemical analyses. The combination of BMP-2 and IGF-1 induced a greater volume of hard tissue augmentation compared with that of BMP-2 alone, regardless of VEGF supplementation, and these groups had increased levels of cartilage compared with others. The volume of hard tissue formation was greatest in the BIV group. In contrast, the BI + V group exhibited a hard tissue volume similar to that of the BI group. While VEGF and CD31 levels were highest in the BIV group at 10 days, there was no correlation at the same time point between hard tissue formation and the quantity of M2 macrophages. In conclusion, the simultaneous release of BMP-2, IGF-1, and VEGF proved to be effective in promoting bone augmentation.
Collapse
Affiliation(s)
- Taichi Tenkumo
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Rie Koide
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Hirofumi Yamaguchi
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Shigeki Suzuki
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Makiko Miyashita
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Keisuke Nakamura
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Han Wang
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Nobuhiro Yoda
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, Sendai, Japan
| | - Keiichi Sasaki
- Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
2
|
Pabst A, Becker P, Götz W, Heimes D, Thiem DGE, Blatt S, Kämmerer PW. A comparative analysis of particulate bovine bone substitutes for oral regeneration: a narrative review. Int J Implant Dent 2024; 10:26. [PMID: 38801622 PMCID: PMC11130110 DOI: 10.1186/s40729-024-00544-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE Particulate bovine bone substitutes (BS) are commonly used in oral regeneration. However, more literature is needed focusing on comparative analyses among various particulate bovine BS. This study evaluates pre-clinical and clinical data of different particulate bovine BS in oral regeneration. METHODS A narrative review was conducted by screening the PubMed database Included in the review were pre-clinical and clinical studies until 2024 comparing a minimum of two distinct particulate bovine BS. In addition to examining general data concerning manufacturing and treatment processes, biological safety, physical and chemical characteristics, and graft resorption, particular emphasis was placed on assessing pre-clinical and clinical data related to ridge preservation, sinus floor elevation, peri-implant defects, and various forms of alveolar ridge augmentation utilizing particulate bovine BS. RESULTS Various treatment temperatures ranging from 300 to 1,250 °C and the employment of chemical cleaning steps were identified for the manufacturing process of particulate bovine BS deemed to possess biosecurity. A notable heterogeneity was observed in the physical and chemical characteristics of particulate bovine BS, with minimal or negligible graft resorption. Variations were evident in particle and pore sizes and the porosity of particulate bovine BS. Pre-clinical assessments noted a marginal inclination towards favorable outcomes for particulate bovine BS subjected to higher treatment temperatures. However, clinical data are insufficient. No distinctions were observed regarding ridge preservation, while slight advantages were noted for high-temperature treated particulate bovine BS in sinus floor elevation. CONCLUSIONS Subtle variances in both pre-clinical and clinical outcomes were observed in across various particulate bovine BS. Due to inadequate data, numerous considerations related to diverse particulate bovine BS, including peri-implant defects, must be more conclusive. Additional clinical studies are imperative to address these knowledge gaps effectively.
Collapse
Affiliation(s)
- Andreas Pabst
- Department of Oral and Maxillofacial Surgery, German Armed Forces Central Hospital, Rübenacherstraße 170, 56072, Koblenz, Germany
- Department of Oral and Maxillofacial Surgery - Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Philipp Becker
- Department of Oral and Maxillofacial Surgery, German Armed Forces Central Hospital, Rübenacherstraße 170, 56072, Koblenz, Germany
- Department of Oral and Maxillofacial Surgery - Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Werner Götz
- Department of Orthodontics, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Diana Heimes
- Department of Oral and Maxillofacial Surgery - Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Daniel G E Thiem
- Department of Oral and Maxillofacial Surgery - Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery - Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery - Plastic Operations, University Medical Center Mainz, Augustusplatz 2, 55131, Mainz, Germany.
| |
Collapse
|
3
|
Kämmerer PW, Al-Nawas B. Bone reconstruction of extensive maxillomandibular defects in adults. Periodontol 2000 2023; 93:340-357. [PMID: 37650475 DOI: 10.1111/prd.12499] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 09/01/2023]
Abstract
Reconstruction of significant maxillomandibular defects is a challenge that has been much discussed over the last few decades. Fundamental principles were developed decades ago (bone bed viability, graft immobilization). Clinical decision-making criteria are highly relevant, including local/systemic factors and incision designs, the choice of material, grafting technique, and donor site morbidity. Stabilizing particulated grafts for defined defects-that is, via meshes or shells-might allow significant horizontal and vertical augmentation; the alternatives are onlay and inlay techniques. More significant defects might require extra orally harvested autologous bone blocks. The anterior iliac crest is often used for nonvascularized augmentation, whereas more extensive defects often require microvascular reconstruction. In those cases, the free fibula flap has become the standard of care. The development of alternatives is still ongoing (i.e., alloplastic reconstruction, zygomatic implants, obturators, distraction osteogenesis). Especially for these complex procedures, three-dimensional planning tools enable facilitated planning and a surgical workflow.
Collapse
Affiliation(s)
- Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
4
|
Gemayel J, Chaker D, El Hachem G, Mhanna M, Salemeh R, Hanna C, Harb F, Ibrahim A, Chebly A, Khalil C. Mesenchymal stem cells-derived secretome and extracellular vesicles: perspective and challenges in cancer therapy and clinical applications. Clin Transl Oncol 2023:10.1007/s12094-023-03115-7. [PMID: 36808392 DOI: 10.1007/s12094-023-03115-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
Stem cell-based therapies have been foreshowed as a promising therapeutic approach for the treatment of several diseases. However, in the cancer context, results obtained from clinical studies were found to be quite limited. Deeply implicated in inflammatory cues, Mesenchymal, Neural, and Embryonic Stem Cells have mainly been used in clinical trials as a vehicle to deliver and stimulate signals in tumors niche. Although these stem cells have shown some therapeutical promises, they still face several challenges, including their isolation, immunosuppression potential, and tumorigenicity. In addition, regulatory and ethical concerns limit their use in several countries. Mesenchymal stem cells (MSC) have emerged as a gold standard adult stem cell medicine tool due to their distinctive characteristics, such as self-renewal and potency to differentiate into numerous cell types with lower ethical restrictions. Secreted extracellular vesicles (EVs), secretomes, and exosomes play a crucial role in mediating cell-to-cell communication to maintain physiological homeostasis and influence pathogenesis. Due to their low immunogenicity, biodegradability, low toxicity, and ability to transfer bioactive cargoes across biological barriers, EVs and exosomes were considered an alternative to stem cell therapy through their immunological features. MSCs-derived EVs, exosomes, and secretomes showed regenerative, anti-inflammatory, and immunomodulation properties while treating human diseases. In this review, we provide an overview of the paradigm of MSCs derived exosomes, secretome, and EVs cell-free-based therapies, we will focus on MSCs-derived components in anti-cancer treatment with decreased risk of immunogenicity and toxicity. Astute exploration of MSCs may lead to a new opportunity for efficient therapy for patients with cancer.
Collapse
Affiliation(s)
- Jack Gemayel
- Faculty of Health Sciences, Balamand University, Beirut, Lebanon
| | - Diana Chaker
- INSERM, National Institute of Health and Medical Research, Paris XI, Paris, France
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
| | - Georges El Hachem
- Balamand University, Faculty of Medicine, Beirut, Lebanon
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Melissa Mhanna
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Rawad Salemeh
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
| | - Colette Hanna
- Faculty of Medicine, Lebanese American University Medical Center, Rizk Hospital, Beirut, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Ahmad Ibrahim
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
- Balamand University, Faculty of Medicine, Beirut, Lebanon
| | - Alain Chebly
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
- Higher Institute of Public Health, Saint Joseph University, Beirut, Lebanon
| | - Charbel Khalil
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon.
- Bone Marrow Transplant Unit, Burjeel Medical City, Abu Dhabi, UAE.
- Stem Cell Institute, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
5
|
Dong K, Zhou WJ, Liu ZH. Metformin enhances the osteogenic activity of rat bone marrow mesenchymal stem cells by inhibiting oxidative stress induced by diabetes mellitus: an in vitro and in vivo study. J Periodontal Implant Sci 2022; 53:54-68. [PMID: 36468474 PMCID: PMC9943706 DOI: 10.5051/jpis.2106240312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The purpose of this study was to determine whether metformin (MF) could alleviate the expresssion of reactive oxygen species (ROS) and improve the osteogenic ability of bone marrow mesenchymal stem cells derived from diabetic rats (drBMSCs) in vitro, and to evaluate the effect of MF on the ectopic osteogenesis of drBMSCs in a nude mouse model in vivo. METHODS BMSCs were extracted from normal and diabetic rats. In vitro, a cell viability assay (Cell Counting Kit-8), tests of alkaline phosphatase (ALP) activity, and western blot analysis were first used to determine the cell proliferation and osteogenic differentiation of drBMSCs that were subjected to treatment with different concentrations of MF (0, 50, 100, 200, 500 μM). The cells were then divided into 5 groups: (1) normal rat BMSCs (the BMSCs derived from normal rats group), (2) the drBMSCs group, (3) the drBMSCs + Mito-TEMPO (10 μM, ROS scavenger) group, (4) the drBMSCs + MF (200 μM) group, and (5) the drBMSCs + MF (200 μM) + H2O2 (50 μM, ROS activator) group. Intracellular ROS detection, a senescence-associated β-galactosidase assay, ALP staining, alizarin red staining, western blotting, and immunofluorescence assays were performed to determine the effects of MF on oxidative stress and osteogenic differentiation in drBMSCs. In vivo, the effect of MF on the ectopic osteogenesis of drBMSCs was evaluated in a nude mouse model. RESULTS MF effectively reduced ROS levels in drBMSCs. The cell proliferation, ALP activity, mineral deposition, and osteogenic-related protein expression of drBMSCs were demonstrably higher in the MF-treated group than in the non-MF-treated group. H2O2 inhibited the effects of MF. In addition, ectopic osteogenesis was significantly increased in drBMSCs treated with MF. CONCLUSIONS MF promoted the proliferation and osteogenic differentiation of drBMSCs by inhibiting the oxidative stress induced by diabetes and enhenced the ectopic bone formation of drBMSCs in nude mice.
Collapse
Affiliation(s)
- Kai Dong
- School and Hospital of Stomatology, Shandong University, Jinan, China.,Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, Yantai, China
| | - Wen-Juan Zhou
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, Yantai, China
| | - Zhong-Hao Liu
- School and Hospital of Stomatology, Shandong University, Jinan, China.,Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, Yantai, China.
| |
Collapse
|
6
|
D'Esposito V, Lecce M, Marenzi G, Cabaro S, Ambrosio MR, Sammartino G, Misso S, Migliaccio T, Liguoro P, Oriente F, Fortunato L, Beguinot F, Sammartino JC, Formisano P, Gasparro R. Platelet-rich plasma counteracts detrimental effect of high-glucose concentrations on mesenchymal stem cells from Bichat fat pad. J Tissue Eng Regen Med 2020; 14:701-713. [PMID: 32174023 DOI: 10.1002/term.3032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
Diabetic patients display increased risk of periodontitis and failure in bone augmentation procedures. Mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) represent a relevant advantage in tissue repair process and regenerative medicine. We isolated MSCs from Bichat's buccal fat pad (BFP) and measured the effects of glucose and PRP on cell number and osteogenic differentiation potential. Cells were cultured in the presence of 5.5-mM glucose (low glucose [LG]) or 25-mM glucose (high glucose [HG]). BFP-MSC number was significantly lower when cells were cultured in HG compared with those in LG. Following osteogenic differentiation procedures, calcium accumulation, alkaline phosphatase activity, and expression of osteogenic markers were significantly lower in HG compared with LG. Exposure of BFP-MSC to PRP significantly increased cell number and osteogenic differentiation potential, reaching comparable levels in LG and in HG. Thus, high-glucose concentrations impair BFP-MSC growth and osteogenic differentiation. However, these detrimental effects are largely counteracted by PRP.
Collapse
Affiliation(s)
- Vittoria D'Esposito
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Manuela Lecce
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gaetano Marenzi
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Serena Cabaro
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Maria Rosaria Ambrosio
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gilberto Sammartino
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Saverio Misso
- Unit of Transfusion Medicine, ASL-CE, Caserta, Italy
| | - Teresa Migliaccio
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pasquale Liguoro
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Leonzio Fortunato
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Francesco Beguinot
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | | | - Pietro Formisano
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Roberta Gasparro
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|