Kalhor S, Fattahi A. Design of ionic liquids containing glucose and choline as drug carriers, finding the link between QM and MD studies.
Sci Rep 2022;
12:21941. [PMID:
36535965 PMCID:
PMC9763358 DOI:
10.1038/s41598-022-25963-z]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Designing drug delivery systems for therapeutic compounds whose receptors are located in the cytosol of cells is challenging as a bilayer cell membrane is negatively charged. The newly designed drug delivery systems should assist the mentioned drugs in passing the membrane barriers and achieving their targets. This study concentrated on developing novel ionic liquids (ILs) that interact effectively with cell membranes. These ILs are based on glucose-containing choline and are expected to be non-toxic. The binding energies of the known pharmaceutically active ionic liquids were calculated at the B3LYP/6-311++G(d,p) level in the gas phase and compared with those of our newly designed carbohydrate-based ionic liquids. Subsequently, we employed MD simulations to obtain information about the interactions of these known and designed ILs with the cell membrane. In our approach, we adopted QM and MD studies and illustrated that there could be a link between the QM and MD results.
Collapse