1
|
Pham D, Truong D, Tran QH, Ho QT, Nguyen TAD, Nguyen TNH, Nguyen TV, Nguyen TTV, Cao TS, Barrow CJ, Nguyen HC. Fractionation, identification of chemical constituents, and biological properties of cashew ( Anacardium occidentale L.) leaf extracts. Food Sci Nutr 2023; 11:7996-8008. [PMID: 38107119 PMCID: PMC10724627 DOI: 10.1002/fsn3.3718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023] Open
Abstract
The current study aimed to identify the chemical constituents and bioactivities of the crude ethanolic extract (CEE) and its fractions (ethyl acetate (EAF), hexane (HEF), and aqueous (AEF)) from leaves of cashew (Anacardium occidentale L.) grown in Vietnam. A total of 31 compounds which belong to alkanes, hydrocarbons, iodine, terpenoids, phenolics, and flavonoids were determined by a gas chromatography-mass spectrometry (GC-MS) analysis, with bis(2-ethylhexyl) phthalate being the most prevailing compound. The highest total phenolic and flavonoid contents were obtained in the EAF, followed by HEF, CEE, and AQF. All samples showed promising in vitro antibacterial activity, enzyme inhibition, and anticancer activity. Among the samples tested, the EAF exhibited the highest enzyme inhibition activity against α-amylase and α-glucosidase (IC50 values of 51.24 μg/mL and 99.29 μg/mL, respectively), cytotoxicity activity against HeLa cells (IC50 value of 79.49 μg/mL), and antibacterial activity against Bacillus subtilis and Escherichia coli with MIC values of 5 mg/mL and 2.5 mg/mL, respectively. These findings suggest that the leaves of A. occidentale cultivated in Vietnam are a promising source of bioactive components and that EAF is a promising bioactive material warranting further pharmaceutical investigation.
Collapse
Affiliation(s)
- Dinh‐Chuong Pham
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Dieu‐Hien Truong
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Quang Huy Tran
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Quang Tien Ho
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | | | | | - Thanh Vinh Nguyen
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Thi Thao Vy Nguyen
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Tan Sang Cao
- Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
| | - Colin J. Barrow
- Centre for Sustainable BioproductsDeakin UniversityGeelongVictoriaAustralia
| | - Hoang Chinh Nguyen
- Centre for Sustainable BioproductsDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
2
|
Zheng WJ, Ren YS, Wu ML, Yang YL, Fan Y, Piao XH, Ge YW, Wang SM. A review of the traditional uses, phytochemistry and biological activities of the Melastoma genus. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113322. [PMID: 32871236 DOI: 10.1016/j.jep.2020.113322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/25/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Melastoma consists of approximately 100 species distributed widely in tropical and subtropical countries, and Melastoma species are often used for medicinal purposes, such as treatment for bleeding, diarrhea, diabetes, and gynecological tumors by local people, mostly in Southeast Asian countries. AIM OF THE REVIEW The present review summarizes the traditional uses, phytochemistry and pharmacology of species belonging to Melastoma to suggest further research strategies and to facilitate the exploitation of the therapeutic potential of Melastoma species for the treatment of human disorders. MATERIALS AND METHODS Information related to the traditional uses, phytochemistry and pharmacological activities was systematically collected by searching for the word "Melastoma" in electronic databases, including SciFinder, Web of Science, PubMed, and Google Scholar, from Apr. 1968 until Dec. 2019. RESULTS A systematic literature survey revealed that Melastoma spp. are widely distributed in southern Asia to northern Oceania and the Pacific Islands and are traditionally used to treat bleeding, diarrhea, swelling, and gynecological tumors. Approximately 142 compounds, including flavonoids, tannins, phenylpropanoids, organic acids, terpenoids, and steroids, have been reported from Melastoma spp. Different extracts have been evaluated for their pharmacological activities, including anti-inflammatory, hemostatic, anticoagulant, cytotoxic, antibacterial, antioxidant, hepatoprotective, gastroprotective and hypoglycemic activities. CONCLUSIONS Melastoma spp. are popularly used in Southeast Asian countries as effective herbs and are rich in flavonoids, tannins and organic acids with valuable medicinal properties. However, additional studies of the chemical constituents and the mechanism-based pharmacological activities of many members of Melastoma are still needed for developing new plant-derived drugs. In addition, studies on the clinical safety and efficacy of Melastoma are also needed.
Collapse
Affiliation(s)
- Wen-Jun Zheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ying-Shan Ren
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Miao-Li Wu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ya-Ling Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Fan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiu-Hong Piao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yue-Wei Ge
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Shu-Mei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Mini CA, Dorta DJ, Maria-Engler SS, Oliveira DP. Immortalized equivalent human epidermis as a platform to evaluation hair dyes toxicity: Efficiency comparison between 3D and monolayer culture. Chem Biol Interact 2020; 330:109227. [PMID: 32818478 DOI: 10.1016/j.cbi.2020.109227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
Abstract
The use of 3D models in various scientific applications is becoming more popular to replace traditional monolayers models. In this work, we used a three-dimensional in-house model of epidermis using HaCaT immortalized cells to evaluate the dermal toxicity induced by Basic Blue 99 and Basic Red 51, both present in commercial hair dye formulations. Our data show that cells cultured in the 3D model respond differently to those cultured in monolayer. Basic Red 51 dye induces apoptosis an DNA breaks in both models, however, these effects is more pronounced in cells cultured in monolayer. The toxic mode of action of Basic Blue 99 seems to be the induction of cell death, without genotoxic effects, but while the necrotic pathway is observed in HaCaT monolayer cell culture, was apoptosis seen in the Equivalent Human Epidermis (EHE) model. We could also confirm that cells in EHE model, an environment that could better mimic human effects, react differently to chemical stressors than the cells cultivated in 2D.
Collapse
Affiliation(s)
- C A Mini
- Faculty of Pharmaceutical Sciences of Ribeirão Preto- Laboratory of Ecotoxicology and Human Toxicology, University of São Paulo, Brazil
| | - D J Dorta
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Departamento de Química, Brazil
| | - S S Maria-Engler
- Faculty of Pharmaceutical Sciences- Laboratory of Skin Biology and Melanoma Group, University of São Paulo, Brazil
| | - D P Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto- Laboratory of Ecotoxicology and Human Toxicology, University of São Paulo, Brazil.
| |
Collapse
|