1
|
Bocci T, Ferrara R, Albizzati T, Averna A, Guidetti M, Marceglia S, Priori A. Asymmetries of the subthalamic activity in Parkinson's disease: phase-amplitude coupling among local field potentials. Brain Commun 2024; 6:fcae201. [PMID: 38894949 PMCID: PMC11184348 DOI: 10.1093/braincomms/fcae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/22/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
The role of brain asymmetries of dopaminergic neurons in motor symptoms of Parkinson's disease is still undefined. Local field recordings from the subthalamic nucleus revealed some neurophysiological biomarkers of the disease: increased beta activity, increased low-frequency activity and high-frequency oscillations. Phase-amplitude coupling coordinates the timing of neuronal activity and allows determining the mechanism for communication within distinct regions of the brain. In this study, we discuss the use of phase-amplitude coupling to assess the differences between the two hemispheres in a cohort of 24 patients with Parkinson's disease before and after levodopa administration. Subthalamic low- (12-20 Hz) and high-beta (20-30 Hz) oscillations were compared with low- (30-45 Hz), medium- (70-100 Hz) and high-frequency (260-360 Hz) bands. We found a significant beta-phase-amplitude coupling asymmetry between left and right and an opposite-side-dependent effect of the pharmacological treatment, which is associated with the reduction of motor symptoms. In particular, high coupling between high frequencies and high-beta oscillations was found during the OFF condition (P < 0.01) and a low coupling during the ON state (P < 0.0001) when the right subthalamus was assessed; exactly the opposite happened when the left subthalamus was considered in the analysis, showing a lower coupling between high frequencies and high-beta oscillations during the OFF condition (P < 0.01), followed by a higher one during the ON state (P < 0.01). Interestingly, these asymmetries are independent of the motor onset side, either left or right. These findings have important implications for neural signals that may be used to trigger adaptive deep brain stimulation in Parkinson's and could provide more exhaustive insights into subthalamic dynamics.
Collapse
Affiliation(s)
- Tommaso Bocci
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Rosanna Ferrara
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Tommaso Albizzati
- Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Friuli-Venezia Giulia, Italy
| | - Alberto Averna
- Department of Neurology, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Matteo Guidetti
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Friuli-Venezia Giulia, Italy
- Newronika S.r.l., 20093 Cologno Monzese, Italy
| | - Alberto Priori
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| |
Collapse
|
2
|
Schechtmann G, Glud AN, Jourdain VA, Bergholt B, Sørensen JCH. "Suboptimal" placement of STN DBS electrodes as a novel strategy in Parkinson's disease? Acta Neurochir (Wien) 2023; 165:3943-3945. [PMID: 37792049 DOI: 10.1007/s00701-023-05796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023]
Affiliation(s)
- Gastón Schechtmann
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark.
| | - Andreas Nørgaard Glud
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | - Bo Bergholt
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Christian Hedemann Sørensen
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
3
|
Leodori G, Santilli M, Modugno N, D’Avino M, De Bartolo MI, Fabbrini A, Rocchi L, Conte A, Fabbrini G, Belvisi D. Postural Instability and Risk of Falls in Patients with Parkinson's Disease Treated with Deep Brain Stimulation: A Stabilometric Platform Study. Brain Sci 2023; 13:1243. [PMID: 37759844 PMCID: PMC10526843 DOI: 10.3390/brainsci13091243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Postural instability (PI) in Parkinson's disease (PD) exposes patients to an increased risk of falls (RF). While dopaminergic therapy and deep brain stimulation (DBS) improve motor performance in advanced PD patients, their effects on PI and RF remain elusive. PI and RF were assessed using a stabilometric platform in six advanced PD patients. Patients were evaluated in OFF and ON dopaminergic medication and under four DBS settings: with DBS off, DBS bilateral, and unilateral DBS of the more- or less-affected side. Our findings indicate that dopaminergic medication by itself exacerbated PI and RF, and DBS alone led to a decline in RF. No combination of medication and DBS yielded a superior improvement in postural control compared to the baseline combination of OFF medication and the DBS-off condition. Yet, for ON medication, DBS significantly improved both PI and RF. Among DBS conditions, DBS bilateral provided the most favorable outcomes, improving PI and RF in the ON medication state and presenting the smallest setbacks in the OFF state. Conversely, the more-affected side DBS was less beneficial. These preliminary results could inform therapeutic strategies for advanced PD patients experiencing postural disorders.
Collapse
Affiliation(s)
- Giorgio Leodori
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Marco Santilli
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
| | - Nicola Modugno
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
| | - Michele D’Avino
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
| | - Maria Ilenia De Bartolo
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Andrea Fabbrini
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy;
| | - Antonella Conte
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Giovanni Fabbrini
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| | - Daniele Belvisi
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.L.); (M.S.); (N.M.); (M.D.); (A.C.); (D.B.)
- Department of Human Neuroscience, University of Rome “Sapienza”, 00185 Rome, Italy; (M.I.D.B.); (A.F.)
| |
Collapse
|
4
|
Sun X, Li X, Zhang L, Zhang Y, Qi X, Wang S, Qin C. Longitudinal assessment of motor function following the unilateral intrastriatal 6-hydroxydopamine lesion model in mice. Front Behav Neurosci 2022; 16:982218. [PMID: 36505729 PMCID: PMC9730519 DOI: 10.3389/fnbeh.2022.982218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Despite the widespread use of the unilateral striatal 6-hydroxydopamine (6-OHDA) lesion model in mice in recent years, the stability of behavioral deficits in the 6-OHDA striatal mouse model over time is not yet clear, raising concerns about using this model to evaluate a compound's long-term therapeutic effects. Materials and methods In the current study, mice were tested at regular intervals in the cylinder test and gait analysis beginning 3 days after 6-OHDA injection of 4 and 8 μg and lasting until 56 days post-lesion. Apomorphine-induced rotational test and rotarod test were also performed on Day 23 and 43 post-lesion, respectively. Immunohistochemistry for dopaminergic neurons stained by tyrosine hydroxylase (TH) was also performed. Results Our results showed that both the 4 and 8 μg 6-OHDA lesion groups exhibited forelimb use asymmetry with a preference for the ipsilateral (injection) side on Day 3 and until Day 21 post-lesion, but did not show forelimb asymmetry on Day 28 to 56 post-lesion. The 8 μg 6-OHDA lesion group still exhibited forelimb asymmetry on Day 28 and 42 post-lesion, but not on Day 56. The gait analysis showed that the contralateral front and hind step cycles increased from Day 3 to 42 post-lesion and recovered on Day 56 post-lesion. In addition, our results displayed a dose-dependent reduction in TH+ cells and TH+ fibers, as well as dose-dependent apomorphine-induced rotations. In the rotarod test, the 8 μg 6-OHDA lesion group, but not the 4 μg group, decreased the latency to fall on the rotarod on Day 43 post-lesion. Conclusion In summary, unilateral striatal 6-OHDA injections of 4 and 8 μg induced spontaneous motor impairment in mice, which partially recovered starting on Day 28 post-lesion. Forced motor deficits were observed in the 8 g 6-OHDA lesion group, which remained stable on Day 43 post-lesion. In addition, the rotarod test and apomorphine-induced rotational test can distinguish between lesions of different extents and are useful tools for the assessment of functional recovery in studies screening novel potential therapies.
Collapse
Affiliation(s)
- Xiuping Sun
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Xianglei Li
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Ling Zhang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Yu Zhang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Xiaolong Qi
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Siyuan Wang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Chuan Qin
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China,Changping National Laboratory (CPNL), Beijing, China,*Correspondence: Chuan Qin,
| |
Collapse
|
5
|
Lizárraga KJ, Gnanamanogaran B, Al‐Ozzi TM, Cohn M, Tomlinson G, Boutet A, Elias GJ, Germann J, Soh D, Kalia SK, Hodaie M, Munhoz RP, Marras C, Hutchison WD, Lozano AM, Lang AE, Fasano A. Lateralized Subthalamic Stimulation for Axial Dysfunction in Parkinson's Disease: A Randomized Trial. Mov Disord 2022; 37:1079-1087. [DOI: 10.1002/mds.28953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Karlo J. Lizárraga
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of Medicine, University of Toronto Toronto Ontario Canada
- Motor Physiology and Neuromodulation Program, Division of Movement Disorders, Department of Neurology and Center for Health and Technology University of Rochester Rochester New York USA
| | - Bhairavei Gnanamanogaran
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of Medicine, University of Toronto Toronto Ontario Canada
- University of Toronto Toronto Ontario Canada
| | - Tameem M. Al‐Ozzi
- University of Toronto Toronto Ontario Canada
- Krembil Research Institute Toronto Ontario Canada
- Departments of Surgery and Physiology University of Toronto Toronto Ontario Canada
| | - Melanie Cohn
- Krembil Research Institute Toronto Ontario Canada
- Department of Psychology University of Toronto Toronto Ontario Canada
| | - George Tomlinson
- Institute of Health Policy, Management and Evaluation University of Toronto Toronto Ontario Canada
- University Health Network Toronto Ontario Canada
| | - Alexandre Boutet
- University Health Network Toronto Ontario Canada
- Joint Department of Medical Imaging University of Toronto Toronto Ontario Canada
- Division of Neurosurgery, Department of Surgery University Health Network and University of Toronto Toronto Ontario Canada
| | - Gavin J.B. Elias
- University Health Network Toronto Ontario Canada
- Division of Neurosurgery, Department of Surgery University Health Network and University of Toronto Toronto Ontario Canada
| | - Jürgen Germann
- University Health Network Toronto Ontario Canada
- Division of Neurosurgery, Department of Surgery University Health Network and University of Toronto Toronto Ontario Canada
| | - Derrick Soh
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of Medicine, University of Toronto Toronto Ontario Canada
- Alfred Hospital Melbourne Victoria Australia
| | - Suneil K. Kalia
- Krembil Research Institute Toronto Ontario Canada
- Division of Neurosurgery, Department of Surgery University Health Network and University of Toronto Toronto Ontario Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA) Toronto Ontario Canada
| | - Mojgan Hodaie
- Krembil Research Institute Toronto Ontario Canada
- Division of Neurosurgery, Department of Surgery University Health Network and University of Toronto Toronto Ontario Canada
| | - Renato P. Munhoz
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of Medicine, University of Toronto Toronto Ontario Canada
- Krembil Research Institute Toronto Ontario Canada
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of Medicine, University of Toronto Toronto Ontario Canada
- Krembil Research Institute Toronto Ontario Canada
| | - William D. Hutchison
- Krembil Research Institute Toronto Ontario Canada
- Departments of Surgery and Physiology University of Toronto Toronto Ontario Canada
- Division of Neurosurgery, Department of Surgery University Health Network and University of Toronto Toronto Ontario Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA) Toronto Ontario Canada
| | - Andres M. Lozano
- Krembil Research Institute Toronto Ontario Canada
- Division of Neurosurgery, Department of Surgery University Health Network and University of Toronto Toronto Ontario Canada
| | - Anthony E. Lang
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of Medicine, University of Toronto Toronto Ontario Canada
- Krembil Research Institute Toronto Ontario Canada
| | - Alfonso Fasano
- The Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital, University Hospital Network and Division of Neurology, Department of Medicine, University of Toronto Toronto Ontario Canada
- Krembil Research Institute Toronto Ontario Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA) Toronto Ontario Canada
| |
Collapse
|
6
|
Zeng Z, Wang L, Shi W, Xu L, Lin Z, Xu X, Huang P, Pan Y, Chen Z, Ling Y, Ren K, Zhang C, Sun B, Li D. Effects of Unilateral Stimulation in Parkinson's Disease: A Randomized Double-Blind Crossover Trial. Front Neurol 2022; 12:812455. [PMID: 35126302 PMCID: PMC8812849 DOI: 10.3389/fneur.2021.812455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
IntroductionPrevious studies have shown that subthalamic nucleus (STN) and unilateral globus pallidus interna (GPi) are similarly effective in the deep brain stimulation (DBS) treatment of motor symptoms. However, the counterintuitively more common clinical application of STN DBS makes us hypothesize that STN is superior to GPi in the treatment of motor symptoms.MethodsIn this prospective, double-blind, randomized crossover study, idiopathic PD patients treated with combined unilateral STN and contralateral GPi DBS (STN in one brain hemisphere and GPi in the other) for 2 to 3 years were enrolled. The MDS UPDRS-III total score and subscale scores for axial and bilateral limb symptoms were assessed preoperatively and at 2- to 3-year follow-up in four randomized, double-blinded conditions: (1) Med–STN+GPi–, (2) Med–STN–GPi+, (3) Med+STN+GPi–, and (4) Med+STN–GPi+.ResultsEight patients had completed 30 trials of assessment. Compared with the preoperative Med– state, in the Med–STN+GPi– condition, the cardinal symptoms in both sides of the body were all improved. In the Med–STN–GPi+ condition, symptoms of the GPi-stim limb were improved, while only tremor was improved on the ipsilateral side, although all axial symptoms showed aggravation. Compared with the preoperative Med+ state, in the Med+STN+GPi– state, cardinal symptoms were improved on both sides, except that tremor was worsened on the STN-stim side. In the Med+STN–GPi+ state, the overall motor symptoms were aggravated compared with the preoperative Med+ state. Most axial symptoms worsened at acute unilateral STN or GPi DBS onset, compared to both preoperative Med– and Med+ states. No side effects associated with this study were seen.ConclusionsImprovement in motor symptoms was greater in all sub-scores favoring STN. The effects of STN+ were seen on both sides of the body, while GPi+ mainly acted on the contralateral side.
Collapse
Affiliation(s)
- Zhitong Zeng
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linbin Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Weikun Shi
- Gyenno Science Co., LTD., Shenzhen, China
| | - Lu Xu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu Lin
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinmeng Xu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Yun Ling
- Gyenno Science Co., LTD., Shenzhen, China
| | - Kang Ren
- Gyenno Science Co., LTD., Shenzhen, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Chencheng Zhang
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Bomin Sun
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Dianyou Li
| |
Collapse
|
7
|
Wang J, Shang R, He L, Zhou R, Chen Z, Ma Y, Li X. Prediction of Deep Brain Stimulation Outcome in Parkinson's Disease With Connectome Based on Hemispheric Asymmetry. Front Neurosci 2021; 15:620750. [PMID: 34764846 PMCID: PMC8576048 DOI: 10.3389/fnins.2021.620750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease that is associated with motor and non-motor symptoms and caused by lack of dopamine in the substantia nigra of the brain. Subthalamic nucleus deep brain stimulation (STN-DBS) is a widely accepted therapy of PD that mainly inserts electrodes into both sides of the brain. The effect of STN-DBS was mainly for motor function, so this study focused on the recovery of motor function for PD after DBS. Hemispherical asymmetry in the brain network is considered to be a potential indicator for diagnosing PD patients. This study investigated the value of hemispheric brain connection asymmetry in predicting the DBS surgery outcome in PD patients. Four types of brain connections, including left intra-hemispheric (LH) connection, right intra-hemispheric (RH) connection, inter-hemispheric homotopic (Ho) connection, and inter-hemispheric heterotopic (He) connection, were constructed based on the resting state functional magnetic resonance imaging (rs-fMRI) performed before the DBS surgery. We used random forest for selecting features and the Ridge model for predicting surgical outcome (i.e., improvement rate of motor function). The functional connectivity analysis showed that the brain has a right laterality: the RH networks has the best correlation (r = 0.37, p = 5.68E-03) between the predicted value and the true value among the above four connections. Moreover, the region-of-interest (ROI) analysis indicated that the medioventral occipital cortex (MVOcC)–superior temporal gyrus (STG) and thalamus (Tha)–precentral gyrus (PrG) contributed most to the outcome prediction model for DBS without medication. This result provides more support for PD patients to evaluate DBS before surgery.
Collapse
Affiliation(s)
- Jingqi Wang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Ruihong Shang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Le He
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China
| | - Rongsong Zhou
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, China
| | - Zhensen Chen
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Yu Ma
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
8
|
Lin Z, Zhang C, Li D, Sun B. Lateralized effects of deep brain stimulation in Parkinson's disease: evidence and controversies. NPJ Parkinsons Dis 2021; 7:64. [PMID: 34294724 PMCID: PMC8298477 DOI: 10.1038/s41531-021-00209-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The bilateral effects of deep brain stimulation (DBS) on motor and non-motor symptoms of Parkinson's disease (PD) have been extensively studied and reviewed. However, the unilateral effects-in particular, the potential lateralized effects of left- versus right-sided DBS-have not been adequately recognized or studied. Here we summarized the current evidence and controversies in the literature regarding the lateralized effects of DBS on motor and non-motor outcomes in PD patients. Publications in English language before February 2021 were obtained from the PubMed database and included if they directly compared the effects of unilateral versus contralateral side DBS on motor or non-motor outcomes in PD. The current literature is overall of low-quality and is biased by various confounders. Researchers have investigated mainly PD patients receiving subthalamic nucleus (STN) DBS while the potential lateralized effects of globus pallidus interna (GPi) DBS have not been adequately studied. Evidence suggests potential lateralized effects of STN DBS on axial motor symptoms and deleterious effects of left-sided DBS on language-related functions, in particular, the verbal fluency, in PD. The lateralized DBS effects on appendicular motor symptoms as well as other neurocognitive and neuropsychiatric domains remain inconclusive. Future studies should control for varying methodological approaches as well as clinical and DBS management heterogeneities, including symptom laterality, stimulation parameters, location of active contacts, and lead trajectories. This would contribute to improved treatment strategies such as personalized target selection, surgical planning, and postoperative management that ultimately benefit patients.
Collapse
Affiliation(s)
- Zhengyu Lin
- grid.412277.50000 0004 1760 6738Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Institute of Clinical Neuroscience, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- grid.412277.50000 0004 1760 6738Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Institute of Clinical Neuroscience, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.511008.dShanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Dianyou Li
- grid.412277.50000 0004 1760 6738Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Institute of Clinical Neuroscience, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- grid.412277.50000 0004 1760 6738Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293Institute of Clinical Neuroscience, Ruijin Hospital LuWan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Sirica D, Hewitt AL, Tarolli CG, Weber MT, Zimmerman C, Santiago A, Wensel A, Mink JW, Lizárraga KJ. Neurophysiological biomarkers to optimize deep brain stimulation in movement disorders. Neurodegener Dis Manag 2021; 11:315-328. [PMID: 34261338 PMCID: PMC8977945 DOI: 10.2217/nmt-2021-0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intraoperative neurophysiological information could increase accuracy of surgical deep brain stimulation (DBS) lead placement. Subsequently, DBS therapy could be optimized by specifically targeting pathological activity. In Parkinson’s disease, local field potentials (LFPs) excessively synchronized in the beta band (13–35 Hz) correlate with akinetic-rigid symptoms and their response to DBS therapy, particularly low beta band suppression (13–20 Hz) and high frequency gamma facilitation (35–250 Hz). In dystonia, LFPs abnormally synchronize in the theta/alpha (4–13 Hz), beta and gamma (60–90 Hz) bands. Phasic dystonic symptoms and their response to DBS correlate with changes in theta/alpha synchronization. In essential tremor, LFPs excessively synchronize in the theta/alpha and beta bands. Adaptive DBS systems will individualize pathological characteristics of neurophysiological signals to automatically deliver therapeutic DBS pulses of specific spatial and temporal parameters.
Collapse
Affiliation(s)
- Daniel Sirica
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Angela L Hewitt
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Christopher G Tarolli
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| | - Miriam T Weber
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Carol Zimmerman
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Aida Santiago
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Andrew Wensel
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Department of Neurosurgery, University of Rochester, Rochester, NY 14618, USA
| | - Jonathan W Mink
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Karlo J Lizárraga
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA.,Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
10
|
Younce JR, Campbell MC, Hershey T, Tanenbaum AB, Milchenko M, Ushe M, Karimi M, Tabbal SD, Kim AE, Snyder AZ, Perlmutter JS, Norris SA. Resting-State Functional Connectivity Predicts STN DBS Clinical Response. Mov Disord 2021; 36:662-671. [PMID: 33211330 PMCID: PMC7987812 DOI: 10.1002/mds.28376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/23/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Deep brain stimulation of the subthalamic nucleus is a widely used adjunctive therapy for motor symptoms of Parkinson's disease, but with variable motor response. Predicting motor response remains difficult, and novel approaches may improve surgical outcomes as well as the understanding of pathophysiological mechanisms. The objective of this study was to determine whether preoperative resting-state functional connectivity MRI predicts motor response from deep brain stimulation of the subthalamic nucleus. METHODS We collected preoperative resting-state functional MRI from 70 participants undergoing subthalamic nucleus deep brain stimulation. For this cohort, we analyzed the strength of STN functional connectivity with seeds determined by stimulation-induced (ON/OFF) 15 O H2 O PET regional cerebral blood flow differences in a partially overlapping group (n = 42). We correlated STN-seed functional connectivity strength with postoperative motor outcomes and applied linear regression to predict motor outcomes. RESULTS Preoperative functional connectivity between the left subthalamic nucleus and the ipsilateral internal globus pallidus correlated with postsurgical motor outcomes (r = -0.39, P = 0.0007), with stronger preoperative functional connectivity relating to greater improvement. Left pallidal-subthalamic nucleus connectivity also predicted motor response to DBS after controlling for covariates. DISCUSSION Preoperative pallidal-subthalamic nucleus resting-state functional connectivity predicts motor benefit from deep brain stimulation, although this should be validated prospectively before clinical application. These observations suggest that integrity of pallidal-subthalamic nucleus circuits may be critical to motor benefits from deep brain stimulation. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- John R Younce
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Meghan C Campbell
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tamara Hershey
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Aaron B Tanenbaum
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mikhail Milchenko
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mwiza Ushe
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Morvarid Karimi
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Samer D Tabbal
- Department of Neurology, American University of Beirut, Beirut, Lebanon
| | - Albert E Kim
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joel S Perlmutter
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri, USA
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, Missouri, USA
- Program in Occupational Therapy, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Scott A Norris
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Shen T, Yue Y, Zhao S, Xie J, Chen Y, Tian J, Lv W, Lo CYZ, Hsu YC, Kober T, Zhang B, Lai HY. The role of brain perivascular space burden in early-stage Parkinson's disease. NPJ Parkinsons Dis 2021; 7:12. [PMID: 33547311 PMCID: PMC7864928 DOI: 10.1038/s41531-021-00155-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
Perivascular space (PVS) is associated with neurodegenerative diseases, while its effect on Parkinson's disease (PD) remains unclear. We aimed to investigate the clinical and neuroimaging significance of PVS in basal ganglia (BG) and midbrain in early-stage PD. We recruited 40 early-stage PD patients and 41 healthy controls (HCs). Both PVS number and volume were calculated to evaluate PVS burden on 7 T magnetic resonance imaging images. We compared PVS burden between PD and HC, and conducted partial correlation analysis between PVS burden and clinical and imaging features. PD patients had a significantly more serious PVS burden in BG and midbrain, and the PVS number in BG was significantly correlated to the PD disease severity and L-dopa equivalent dosage. The fractional anisotropy and mean diffusivity values of certain subcortical nuclei and white matter fibers within or nearby the BG and midbrain were significantly correlated with the ipsilateral PVS burden indexes. Regarding to the midbrain, the difference between bilateral PVS burden was, respectively, correlated to the difference between fiber counts of white fiber tract passing through bilateral substantia nigra in PD. Our study suggests that PVS burden indexes in BG are candidate biomarkers to evaluate PD motor symptom severity and aid in predicting medication dosage. And our findings also highlight the potential correlations between PVS burden and both grey and white matter microstructures.
Collapse
Affiliation(s)
- Ting Shen
- grid.13402.340000 0004 1759 700XDepartment of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China ,grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Yumei Yue
- grid.13402.340000 0004 1759 700XDepartment of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuai Zhao
- grid.13402.340000 0004 1759 700XDepartment of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Juanjuan Xie
- grid.13402.340000 0004 1759 700XDepartment of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanxing Chen
- grid.13402.340000 0004 1759 700XDepartment of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Tian
- grid.13402.340000 0004 1759 700XDepartment of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wen Lv
- grid.13402.340000 0004 1759 700XDepartment of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Chun-Yi Zac Lo
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yi-Cheng Hsu
- grid.452598.7MR collaboration NE Asia, Siemens Healthcare, Shanghai, China
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland
| | - Baorong Zhang
- grid.13402.340000 0004 1759 700XDepartment of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hsin-Yi Lai
- grid.13402.340000 0004 1759 700XDepartment of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China ,grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Zhang C, Wang L, Hu W, Wang T, Zhao Y, Pan Y, Almeida L, Ramirez-Zamora A, Sun B, Li D. Combined Unilateral Subthalamic Nucleus and Contralateral Globus Pallidus Interna Deep Brain Stimulation for Treatment of Parkinson Disease: A Pilot Study of Symptom-Tailored Stimulation. Neurosurgery 2020; 87:1139-1147. [PMID: 32459849 PMCID: PMC7666906 DOI: 10.1093/neuros/nyaa201] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/19/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Subthalamic nucleus (STN) and globus pallidus interna (GPi) are the most effective targets in deep brain stimulation (DBS) treatment for Parkinson disease (PD). However, the individualized selection of targets remains a clinical challenge. OBJECTIVE To combine unilateral STN and contralateral GPi stimulation (STN DBS in one brain hemisphere and GPi DBS in the other) to maximize the clinical advantages of each target while inducing fewer adverse side effects in selected patients with PD because each target has its own clinical effects and risk profiles. METHODS We reviewed the clinical outcomes of 8 patients with idiopathic PD treated with combined unilateral STN and contralateral GPi DBS. Clinical outcome assessments, focusing on motor and nonmotor symptoms, were performed at baseline and 6-mo and 12-mo follow-up. We performed the assessments under the following conditions: medication on and off (bilateral stimulation on and off and unilateral STN stimulation on). RESULTS Patients showed a significant improvement in motor symptoms, as assessed by the Unified Parkinson Disease Rating Scale III (UPDRS-III) and Timed Up-and-Go Test (TUG), in the off-medication/on-stimulation state at 6-mo and 12-mo follow-up. Also, patients reported a better quality of life, and their intake of levodopa was reduced at 12-mo follow-up. In the on-medication condition, bilateral stimulation was associated with an improvement in axial symptoms, with a 64% improvement in measures of gait and falls at 12-mo follow-up. No irreversible adverse side effects were observed. CONCLUSION Our findings suggest that combined unilateral STN and contralateral GPi DBS could offer an effective and well-tolerated DBS treatment for certain PD patients.
Collapse
Affiliation(s)
- Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linbin Wang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Hu
- Program for Movement Disorders and Neurorestoration, Norman Fixel Institute of Neurological, Diseases, Department of Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - Tao Wang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijie Zhao
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leonardo Almeida
- Program for Movement Disorders and Neurorestoration, Norman Fixel Institute of Neurological, Diseases, Department of Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - Adolfo Ramirez-Zamora
- Program for Movement Disorders and Neurorestoration, Norman Fixel Institute of Neurological, Diseases, Department of Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - Bomin Sun
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Determination of Parkinson Disease Laterality After Deep Brain Stimulation Using 123I FP-CIT SPECT. Clin Nucl Med 2020; 45:e178-e184. [DOI: 10.1097/rlu.0000000000002955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Lizarraga KJ, Fasano A. Effects of Deep Brain Stimulation on Postural Trunk Deformities: A Systematic Review. Mov Disord Clin Pract 2019; 6:627-638. [PMID: 31745470 DOI: 10.1002/mdc3.12829] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/07/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Background Deep brain stimulation (DBS) effects on postural deformities are still poorly explored. Methods Systematic review in accord with the Preferred Reporting Items for Systematic review and Meta-Analysis guidelines (PRISMA). Results All 38 studies that met predefined eligibility criteria had high risk of bias attributed to retrospective analysis of heterogeneous populations with variable and incompletely reported demographic and clinical characteristics, definitions, outcomes, DBS indications, targets, and settings. Five patient groups were identified in the 35 studies with individual data available: (1) parkinsonian camptocormia (n = 96): 89 patients underwent subthalamic (STN) and 7 globus pallidus pars interna (GPi) DBS. Camptocormia was the indication in 3 patients. After DBS, camptocormia improved in 57 of 96 patients (4.3-100% improvement) and remained stable or worsened in 39 of 96 patients (2-100% worsening). (2) dystonic camptocormia (n = 16): All underwent GPi-DBS. They were younger and with shorter disease duration, but longer deformity duration, compared with parkinsonian camptocormia. After GPi-DBS, camptocormia improved in all patients (50-100% improvement). (3) Parkinsonian Pisa syndrome (n = 14): 11 patients underwent STN-DBS for motor fluctuations whereas Pisa syndrome was the indication for pedunculopontine and GPi-DBS in 2 patients. After DBS, Pisa improved in 10 of 14 patients (33.3-66.7% improvement). (4) Dystonic opisthotonus: 2 young patients remarkably responded to GPi-DBS. (5) Parkinsonian anterocollis: There were variable responses in 3 patients after STN-DBS for motor fluctuations. Conclusions Low-quality level of evidence suggests that dystonic camptocormia and opisthotonus improve after GPi-DBS. Parkinsonian camptocormia, Pisa syndrome, and anterocollis have variable responses, and their dystonic features should be further explored.
Collapse
Affiliation(s)
- Karlo J Lizarraga
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, Department of Medicine University of Toronto Toronto Ontario Canada.,Motor Physiology and Neuromodulation Program, Division of Movement Disorders, Department of Neurology University of Rochester Rochester New York USA.,Center for Health and Technology (CHeT) University of Rochester Rochester New York USA
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital and Division of Neurology, Department of Medicine University of Toronto Toronto Ontario Canada.,Krembil Research Institute Toronto Ontario Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA) Toronto Ontario Canada
| |
Collapse
|
15
|
Szlufik S, Kloda M, Friedman A, Potrzebowska I, Gregier K, Mandat T, Przybyszewski A, Dutkiewicz J, Figura M, Habela P, Koziorowski D. The Neuromodulatory Impact of Subthalamic Nucleus Deep Brain Stimulation on Gait and Postural Instability in Parkinson's Disease Patients: A Prospective Case Controlled Study. Front Neurol 2018; 9:906. [PMID: 30429820 PMCID: PMC6220087 DOI: 10.3389/fneur.2018.00906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/08/2018] [Indexed: 01/20/2023] Open
Abstract
Background: Subthalamic nucleus deep brain stimulation (STN-DBS) has been an established method in improvement of motor disabilities in Parkinson's disease (PD) patients. It has been also claimed to have an impact on balance and gait disorders in PD patients, but the previous results are conflicting. Objective: The aim of this prospective controlled study was to evaluate the impact of STN-DBS on balance disorders in PD patients in comparison with Best-Medical-Therapy (BMT) and Long-term-Post-Operative (POP) group. Methods: DBS-group consisted of 20 PD patients (8F, 12M) who underwent bilateral STN DBS. POP-group consisted of 14 post-DBS patients (6F, 8M) in median 30 months-time after surgery. Control group (BMT-group) consisted of 20 patients (11F, 9M) who did not undergo surgical intervention. UPDRS III scale and balance tests (Up And Go Test, Dual Task- Timed Up And Go Test, Tandem Walk Test) and posturography parameters were measured during 3 visits in 9 ± 2months periods (V1, V2, V3) 4 phases of treatment (BMT-ON/OFF, DBS-ON/OFF). Results: We have observed the slowdown of gait and postural instability progression in first 9 post-operative months followed by co-existent enhancement of balance disorders in next 9-months evaluation (p < 0.05) in balance tests (Up and Go, TWT) and in posturography examination parameters (p < 0.05). The effect was not observed neither in BMT-group nor POP-group (p > 0.05): these groups revealed constant progression of static and dynamic instability (p > 0.05). Conclusions: STN-DBS can have modulatory effect on static and dynamic instability in PD patients: it can temporarily improve balance disorders. mainly during first 9 post-operative months, but with possible following deterioration of the symptoms in next post-operative months.
Collapse
Affiliation(s)
- Stanislaw Szlufik
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Maria Kloda
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland.,Department of Rehabilitation, II Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Friedman
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Potrzebowska
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland.,Department of Rehabilitation, II Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Kacper Gregier
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Sklodowska Curie Memorial Oncology Center, Warsaw, Warsaw, Poland
| | - Andrzej Przybyszewski
- Department of Informatics, Polish Japanese Academy of Information Technology, Warsaw, Poland
| | - Justyna Dutkiewicz
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Monika Figura
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Habela
- Department of Informatics, Polish Japanese Academy of Information Technology, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Tang Y, Liu B, Yang Y, Wang CM, Meng L, Tang BS, Guo JF. Identifying mild-moderate Parkinson's disease using whole-brain functional connectivity. Clin Neurophysiol 2018; 129:2507-2516. [PMID: 30347309 DOI: 10.1016/j.clinph.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Our study aims to extract significant disorder-associated patterns from whole brain functional connectivity to distinguish mild-moderate Parkinson's disease (PD) patients from controls. METHODS Resting-state fMRI data were measured from thirty-six PD individuals and thirty-five healthy controls. Multivariate pattern analysis was applied to investigate whole-brain functional connectivity patterns in individuals with 'mild-moderate' PD. Additionally, the relationship between the asymmetry of functional connectivity and the side of the initial symptoms was also analyzed. RESULTS In a leave-one-out cross-validation, we got the generalization rate of 80.28% for distinguishing PD patients from controls. The most discriminative functional connectivity was found in cortical networks that included the default mode, sensorimotor and attention networks. Compared to patients with the left side initially affected, an increased abnormal functional connectivity was found in patients in whom the right side was initially affected. CONCLUSIONS Our results indicated that discriminative functional connectivity is likely associated with disturbances of cortical networks involved in sensorimotor control and attention. The spatiotemporal patterns of motor asymmetry may be related to the lateralized dysfunction on the early stages of PD. SIGNIFICANCE This study identifies discriminative functional connectivity that is associated with disturbances of cortical networks. Our results demonstrated new evidence regarding the functional brain changes related to the unilateral motor symptoms of early PD.
Collapse
Affiliation(s)
- Yan Tang
- School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Bailin Liu
- School of Basic Medical Science Central South University, Changsha, Hunan 410083, China
| | - Yuan Yang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Chang-Min Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Li Meng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China; National Clinical Research Center for Geriatric Medicine, Changsha, 410008 Hunan, China; State Key Laboratory of Medical Genetics, Changsha, 410008 Hunan, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China; National Clinical Research Center for Geriatric Medicine, Changsha, 410008 Hunan, China; State Key Laboratory of Medical Genetics, Changsha, 410008 Hunan, China.
| |
Collapse
|
17
|
Anidi C, O'Day JJ, Anderson RW, Afzal MF, Syrkin-Nikolau J, Velisar A, Bronte-Stewart HM. Neuromodulation targets pathological not physiological beta bursts during gait in Parkinson's disease. Neurobiol Dis 2018; 120:107-117. [PMID: 30196050 DOI: 10.1016/j.nbd.2018.09.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/18/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022] Open
Abstract
Freezing of gait (FOG) is a devastating axial motor symptom in Parkinson's disease (PD) leading to falls, institutionalization, and even death. The response of FOG to dopaminergic medication and deep brain stimulation (DBS) is complex, variable, and yet to be optimized. Fundamental gaps in the knowledge of the underlying neurobiomechanical mechanisms of FOG render this symptom one of the unsolved challenges in the treatment of PD. Subcortical neural mechanisms of gait impairment and FOG in PD are largely unknown due to the challenge of accessing deep brain circuitry and measuring neural signals in real time in freely-moving subjects. Additionally, there is a lack of gait tasks that reliably elicit FOG. Since FOG is episodic, we hypothesized that dynamic features of subthalamic (STN) beta oscillations, or beta bursts, may contribute to the Freezer phenotype in PD during gait tasks that elicit FOG. We also investigated whether STN DBS at 60 Hz or 140 Hz affected beta burst dynamics and gait impairment differently in Freezers and Non-Freezers. Synchronized STN local field potentials, from an implanted, sensing neurostimulator (Activa® PC + S, Medtronic, Inc.), and gait kinematics were recorded in 12 PD subjects, off-medication during forward walking and stepping-in-place tasks under the following randomly presented conditions: NO, 60 Hz, and 140 Hz DBS. Prolonged movement band beta burst durations differentiated Freezers from Non-Freezers, were a pathological neural feature of FOG and were shortened during DBS which improved gait. Normal gait parameters, accompanied by shorter bursts in Non-Freezers, were unchanged during DBS. The difference between the mean burst duration between hemispheres (STNs) of all individuals strongly correlated with the difference in stride time between their legs but there was no correlation between mean burst duration of each STN and stride time of the contralateral leg, suggesting an interaction between hemispheres influences gait. These results suggest that prolonged STN beta burst durations measured during gait is an important biomarker for FOG and that STN DBS modulated long not short burst durations, thereby acting to restore physiological sensorimotor information processing, while improving gait.
Collapse
Affiliation(s)
- Chioma Anidi
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Johanna J O'Day
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Ross W Anderson
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Muhammad Furqan Afzal
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Judy Syrkin-Nikolau
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Anca Velisar
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Helen M Bronte-Stewart
- Stanford University, Department of Neurology and Neurological Sciences, Rm H3136, SUMC, 300 Pasteur Drive, Stanford, CA 94305, USA; Stanford University, Department of Neurosurgery, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Management of Pisa syndrome with lateralized subthalamic stimulation. J Neurol 2018; 265:2442-2444. [PMID: 30074081 DOI: 10.1007/s00415-018-8991-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
|