1
|
Zhao C, Huang L, Tang J, Lv L, Wang X, Dong X, Yang F, Guan Q. Multifunctional nanofibrous scaffolds for enhancing full-thickness wound healing loaded with Bletilla striata polysaccharides. Int J Biol Macromol 2024; 278:134597. [PMID: 39127286 DOI: 10.1016/j.ijbiomac.2024.134597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The considerable challenge of wound healing remains. In this study, we fabricated a novel multifunctional core-shell nanofibrous scaffold named EGF@BSP-CeO2/PLGA (EBCP), which is composed of Bletilla striata polysaccharide (BSP), Ceria nanozyme (CeO2) and epidermal growth factor (EGF) as the core and poly(lactic-co-glycolic acid) (PLGA) as the shell via an emulsion electrospinning technique. An increase in the BSP content within the scaffolds corresponded to improved wound healing performance. These scaffolds exhibited increased hydrophilicity and porosity and improved mechanical properties and anti-UV properties. EBCP exhibited sustained release, and the degradation rate was <4 % in PBS for 30 days. The superior biocompatibility was confirmed by the MTT assay, hemolysis, and H&E staining. In addition, the in vitro results revealed that, compared with the other groups, the EBCP group presented excellent antioxidant and antibacterial effects. More importantly, the in vivo results indicated that the wound closure rate of the EBCP group reached 94.0 % on day 10 in the presence of H2O2. The results demonstrated that EBCP could comprehensively regulate the wound microenvironment, possess hemostatic abilities, and significantly promote wound healing. In conclusion, the EBCP is promising for facilitating the treatment of infected wounds and represents a potential material for clinical applications.
Collapse
Affiliation(s)
- Chaoyue Zhao
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Long Huang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Jie Tang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Linlin Lv
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Xinying Wang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Xiyao Dong
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Fengrui Yang
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Qingxiang Guan
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Tong SY, Ye K, Wang WX, Ai HL. Harzianic acids and oxazolidinone from the endophytic fungus Ilyonectria sp. and their cytotoxicity activity. Fitoterapia 2024; 175:105941. [PMID: 38575089 DOI: 10.1016/j.fitote.2024.105941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Four undescribed compounds including three harzianic acids (1, 3 and 4) and one oxazolidinone (2), along with three known ones (5-7) were isolated from the solid fermented product of endophytic fungus Ilyonectria sp., their structures were elucidated as 1-amino-harzianic acid (1), ilyonectria-oxazolidinone (2),10'-nor- isoharzianic acid (3), isohomoharzianic acid (4), harzianic acid (5), isoharzianic acid (6), homoharzianic acid (7) by means of detailed chemical evidences and spectroscopic data analysis. All the compounds were evaluated for cytotoxicity against SMMC-7721 human cancer cell lines by MTS assay. Among the seven tested compounds, 1-amino-harzianic acid (1) demonstrated well cytotoxic activity against SMMC-7721 with IC50 value of 26.84 μM. The results of molecular docking indicated that compound exhibited moderate anti-tumor activity may through binding to apoptosis related proteins.
Collapse
Affiliation(s)
- Shun-Yao Tong
- School of Pharmaceutical Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Ke Ye
- School of Pharmaceutical Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Wen-Xiang Wang
- School of Pharmacy, Chongqing Three Gorges Medical College, Chongqing 404120, China.
| | - Hong-Lian Ai
- School of Pharmaceutical Science, South-Central Minzu University, Wuhan, Hubei 430074, China.
| |
Collapse
|
3
|
Yang N, Li S, Zhang Y, Pan F, Liu G, Chen X, Yu C, Li K, Liu Y. Evaluation of volatile components from the tuber, fibrous roots, bud, stem and leaf tissues of Bletilla striata for its anti-colon cancer activity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:619-631. [PMID: 38737324 PMCID: PMC11087428 DOI: 10.1007/s12298-024-01450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Bletilla striata (Thunb.) Rchb.f., a medicinal plant in the Orchidaceae family, is mainly found in East Asia and has extensive pharmacological activities. Plant's volatile components are important active ingredients with a wide range of physiological activities, and B. striata has a special odor and unique volatile components. Yet it has received little attention, hindering a full understanding of its phytochemical components. Employing the ultrasonic-assisted extraction method, the volatile components of B. striata's fibrous root, bud, aerial part and tuber were extracted, resulting in yields of 0.06%, 0.64%, 3.38% and 4.47%, respectively. A total of 78 compounds were identified from their chemical profiles using gas chromatography-mass spectrometry (GC-MS), including 45 components with the main compounds of linoleic acid (content accounting for 31.23%), n-hexadecanoic acid (13.53%), and octadecanoic acid (9.5%) from the tuber, 34 components with the main compounds of eicosane, 2-methyl- (28.42%), linoelaidic acid (10.43%), linoleic acid (4.53%), and n-hexadecanoic acid (6.91%) from the fibrous root, 38 components with the main compounds of pentadeca-6,9-dien-1-ol (9.29%), n-hexadecanoic acid (11%), eicosane,2-methyl- (23.43%), and linoleic acid (23.53%) from the bud, and 27 components with the main compounds of linoelaidic acid (5.97%), n-hexadecanoic acid (15.99%), and linolenic acid ethyl ester (18.9%) from the aerial part. Additionally, the growth inhibition activity against colon cancer HCT116 cells was evaluated using sulforhodamine B (SRB) assay and the thiazolyl blue tetrazolium bromide (MTT) assay, and the accumulation of reactive oxygen species (ROS) was determined using dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining and fluorescence intensity analysis. The volatile extracts exhibited significant growth inhibitory efficacy against HCT116 cells, with half-maximal inhibitory concentration (IC50) values of 3.65, 2.32, 2.42 and 3.89 mg/mL in the SRB assay, and 3.55, 2.58, 3.12 and 4.80 mg/mL in the MTT assay for the root, bud, aerial part, and tuber, respectively. Notably, treatment with the aerial part extract caused morphological changes in the cells and significantly raised the intracellular ROS level. In summary, the chemical profiles of the volatile components of B. striata were revealed for the first time, demonstrating a certain tissue specificity. Additionally, it demonstrated for the first time that these volatile extracts possess potent anti-colon cancer activity, highlighting the importance of these volatile components in B. striata's medicinal properties.
Collapse
Affiliation(s)
- Nan Yang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Yong Zhang
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Feng Pan
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Guangjun Liu
- Guizhou Guangzheng Pharmaceutical Co., Ltd, Guiyang, Guizhou China
| | - Xingju Chen
- Guizhou Guangzheng Pharmaceutical Co., Ltd, Guiyang, Guizhou China
| | - Chanyan Yu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Kunmei Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| | - Yun Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
- Center of Forensic Expertise, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou People’s Republic of China
| |
Collapse
|
4
|
Jiang S, Wang M, Zafar S, Jiang L, Luo J, Zhao H, Tian S, Zhu Y, Peng C, Wang W. Phytochemistry, pharmacology and clinical applications of the traditional Chinese herb Pseudobulbus Cremastrae seu Pleiones (Shancigu): A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Pan J, Wang H, Chen Y. Prunella vulgaris L. - A Review of its Ethnopharmacology, Phytochemistry, Quality Control and Pharmacological Effects. Front Pharmacol 2022; 13:903171. [PMID: 35814234 PMCID: PMC9261270 DOI: 10.3389/fphar.2022.903171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Prunella vulgaris L. (PVL) is dried fruit spike of Lamiacea plant Prunella vulgaris L., which is a perennial herb with medicinal and edible homology used for thousands of years. PVL is bitter, acrid, cold, and belongs to the liver and gallbladder meridians. It clears the liver and dissipate fire, improve vision, disperse swelling, and has satisfactory clinical therapeutic effects on many diseases such as photophobia, dizziness, scrofula, goiter, breast cancer. The collection of information and data related to PVL comes from literatures retrieved and collated from various online scientific databases (such as CNKI, VIP, PubMed, Web of Science, Research Gate, Science Database), ancient books of traditional chinese medicine (Encyclopedia of Traditional Chinese Medicine, Classics of Traditional Chinese Medicine, Dictionary of Traditional Chinese Medicine), and Doctoral and Master's Dissertations. Currently, the major chemical constituents isolated and identified from PVL are triterpenoids, steroids, flavonoids, phenylpropanoids, organic acids, volatile oils and polysaccharides. Modern pharmacological studies have shown that PVL has a wide range of pharmacological activities, including anti-inflammatory, anti-tumor, antibacterial and antiviral effects, as well as immune regulation, antihypertensive, hypoglycemic, lipid-lowering, antioxidant, free radical scavenging, liver protection, sedative and hypnotic effects. This paper reviewes the botany, ethnopharmacology, traditional application, phytochemistry, analytical methods, quality control, pharmacological effects of PVL. It can be used not only as medicine, but also gradually integrated into the "medicine and food homology" and "Chinese medicine health" boom. More importantly, it has great potential for drug resources development. This paper deeply discusses the shortcomings of current PVL research, and proposes corresponding solutions, in order to find a breakthrough point for PVL research in the future. At the same time, it is necessary to further strengthen the research on its medicinal chemistry, mechanism of action and clinical application efficacy in the future, and strive to extract, purify and synthesize effective components with high efficiency and low toxicity, so as to improve the safety and rationality of clinical medication.
Collapse
Affiliation(s)
| | | | - Yinghua Chen
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Yu X, Ming X, Xiong M, Zhang C, Yue L, Yang L, Fan C. Partial shade improved the photosynthetic capacity and polysaccharide accumulation of the medicinal plant Bletilla ochracea Schltr. PHOTOSYNTHETICA 2022; 60:168-178. [PMID: 39650760 PMCID: PMC11558509 DOI: 10.32615/ps.2021.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/06/2021] [Indexed: 12/11/2024]
Abstract
To study the light intensity suitable for Bletilla ochracea Schltr., morphology, photosynthetic parameters, and polysaccharide content of seedlings were evaluated under different light intensities. All shade treatments promoted plant growth and net photosynthetic rate while having no significant effect on transpiration rate. The maximum photochemical efficiency and potential photochemical efficiency reached the lowest values under full sunlight. The electron transport rate and photochemical quenching under shade were significantly higher than those under full light, while nonphotochemical quenching was the highest under full light. This indicated that the shade alleviated photoinhibition in summer and improved the utilization of light. B. ochracea could adapt to different light intensities, enhancing photosynthetic efficiency under low light by improving the electron transport and the degree of opened PSII reaction centers, and adapting to high light by increasing heat dissipation. Plant growth, photosynthesis, and polysaccharide accumulation of B. ochracea greatly increased under 76.4% shade.
Collapse
Affiliation(s)
- X.F. Yu
- College of Landscape Architecture, Sichuan Agricultural University, 611130 Chengdu, China
| | - X.Y. Ming
- College of Landscape Architecture, Sichuan Agricultural University, 611130 Chengdu, China
| | - M. Xiong
- College of Landscape Architecture, Sichuan Agricultural University, 611130 Chengdu, China
| | - C. Zhang
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, 610300 Chengdu, China
| | - L.J. Yue
- College of Landscape Architecture, Sichuan Agricultural University, 611130 Chengdu, China
| | - L. Yang
- College of Landscape Architecture, Sichuan Agricultural University, 611130 Chengdu, China
| | - C.Y. Fan
- College of Landscape Architecture, Sichuan Agricultural University, 611130 Chengdu, China
| |
Collapse
|
7
|
Dimeric 9,10-dihydrophenanthrene derivatives from Bletilla striata and their atropisomeric nature. Fitoterapia 2021; 152:104919. [PMID: 33984433 DOI: 10.1016/j.fitote.2021.104919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022]
Abstract
Four pairs of undescribed racemic bi(9,10-dihydro) phenanthrene and phenanthrene/bibenzyl atropisomers, bletistriatins A-D (1-4), along with 22 known compounds were isolated from the rhizomes of Bletilla striata. These dimeric derivatives were constructed through direct C-C connection or an oxygen bridge. The structures of new compounds were fully established by extensive analysis of MS, and 1D and 2D NMR spectroscopic data. Owing to sterically hindered rotation around the biaryl axis, these dimeric 9,10-dihydrophenanthrene derivatives can exist as a pair of enantiomers, but were isolated as racemates. Their racemates were separated to yield enantiomerically pure compounds by HPLC on an optically active stationary phase, and were stereochemically characterized on-line by circular dichroism (CD) spectroscopy (LC-CD coupling). Some isolates were evaluated for cytotoxicity against human cancer cell lines HL-60 and A549. Compounds 13, 17, and 20 showed cytotoxicity against HL-60 and A-549 cell lines with IC50 values ranging from 2.56 to 8.67 μM.
Collapse
|
8
|
Network Pharmacological Study of Achyranthis bidentatae Radix Effect on Bone Trauma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5692039. [PMID: 33748269 PMCID: PMC7959927 DOI: 10.1155/2021/5692039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 01/02/2023]
Abstract
Purpose Bone trauma is a clinical condition that afflicts the majority of the world's population. For the management of bone trauma, the underlying mechanisms of the drugs effective for bone healing are deemed necessary. Achyranthis bidentatae Radix (ABR) is a popular alternative medicine recommended in the treatment of bone trauma and injury, yet its mechanism of action persists to be vague. This study was conducted for the evaluation of the mode of action of ABR through network pharmacology in treating bone trauma. Methods An extensive survey of published works led to the development of a drug-target database, after which multiple protein targets for bone trauma were discerned. The protein-protein interaction network was developed by utilizing the STITCH database and gene ontology (GO) enrichment analysis using Cytoscape and ClueGO. Moreover, docking studies were performed for revealing the affinity of various ingredients with IL6. Results The extensive literature survey yielded the presence of 176 components in ABR, and 151 potential targets were acquired. Scrutinization of these targets revealed that 21 potential targets were found to be associated with bone trauma. Out of which, some remarkable targets such as IL6, MAPK14, MAPK8, SRC, PTGS2, and MMP2 were observed to be associated in the functional interaction of ABR. According to docking results, several ingredients of ABR such as Baicalien, Copistine, Epiberberine, Kaempferol, and Palmatine have the lowest docking scores (range between -6 and -7). Conclusions The results of the study elucidated that ABR can positively be utilized for the management of bone trauma, which can be mediated by multiple molecular mechanisms such as ERBB2 signaling pathway, positive regulation of oxidoreductase activity, JNK cascade pathway, multicellular organism metabolic process, T cell costimulation, and the positive regulation of MAPK activity. The findings also suggest that several ingredients of ABR such as Baicalien, Copistine, Epiberberine, Kaempferol, and Palmatine have good affinity with IL6, suggesting the promising potential of ABR in treating bone trauma, likely through IL6.
Collapse
|