1
|
Zhang Y, Yang R, Yuan G, Li W, Cui Z, Xiao Z, Dong X, Yang H, Liu X, Zhang L, Hou Y, Liu M, Liu S, Hao Y, Zhang Y, Zheng X. Enhancing Inactivated Yellow Fever 17D Vaccine-Induced Immune Responses in Balb/C Mice Using Alum/CpG. Vaccines (Basel) 2023; 11:1744. [PMID: 38140149 PMCID: PMC10747526 DOI: 10.3390/vaccines11121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
There are some concerns about the safety of live attenuated yellow fever vaccines (YF-live), particularly viscerotropic adverse events, which have a high mortality rate. The cellular production of the vaccine will not cause these adverse effects and has the potential to extend applicability to those who have allergic reactions, immunosuppression, and age. In this study, inactivated yellow fever (YF) was prepared and adsorbed with Alum/CpG. The cellular and humoral immunities were investigated in a mouse model. The results showed that Alum/CpG (20 μg/mL) could significantly increase the binding and neutralizing activities of the antibodies against YF. Moreover, the antibody level at day 28 after one dose was similar to that of the attenuated vaccine, but significantly higher after two doses. At the same time, Alum/CpG significantly increased the levels of IFN-γ and IL-4 cytokines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing 100170, China; (Y.Z.); (R.Y.); (G.Y.); (W.L.); (Z.C.); (Z.X.); (X.D.); (H.Y.); (X.L.); (L.Z.); (Y.H.); (M.L.); (S.L.); (Y.H.)
| | - Xiaotong Zheng
- Beijing Institute of Biological Products Company Limited, Beijing 100170, China; (Y.Z.); (R.Y.); (G.Y.); (W.L.); (Z.C.); (Z.X.); (X.D.); (H.Y.); (X.L.); (L.Z.); (Y.H.); (M.L.); (S.L.); (Y.H.)
| |
Collapse
|
2
|
Montamat G, Leonard C, Poli A, Klimek L, Ollert M. CpG Adjuvant in Allergen-Specific Immunotherapy: Finding the Sweet Spot for the Induction of Immune Tolerance. Front Immunol 2021; 12:590054. [PMID: 33708195 PMCID: PMC7940844 DOI: 10.3389/fimmu.2021.590054] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Prevalence and incidence of IgE-mediated allergic diseases have increased over the past years in developed and developing countries. Allergen-specific immunotherapy (AIT) is currently the only curative treatment available for allergic diseases that has long-term efficacy. Although AIT has been proven successful as an immunomodulatory therapy since its beginnings, it still faces several unmet needs and challenges today. For instance, some patients can experience severe side effects, others are non-responders, and prolonged treatment schedules can lead to lack of patient adherence and therapy discontinuation. A common strategy to improve AIT relies on the use of adjuvants and immune modulators to boost its effects and improve its safety. Among the adjuvants tested for their clinical efficacy, CpG oligodeoxynucleotide (CpG-ODN) was investigated with limited success and without reaching phase III trials for clinical allergy treatment. However, recently discovered immune tolerance-promoting properties of CpG-ODN place this adjuvant again in a prominent position as an immune modulator for the treatment of allergic diseases. Indeed, it has been shown that the CpG-ODN dose and concentration are crucial in promoting immune regulation through the recruitment of pDCs. While low doses induce an inflammatory response, high doses of CpG-ODN trigger a tolerogenic response that can reverse a pre-established allergic milieu. Consistently, CpG-ODN has also been found to stimulate IL-10 producing B cells, so-called B regulatory cells (Bregs). Accordingly, CpG-ODN has shown its capacity to prevent and revert allergic reactions in several animal models showing its potential as both preventive and active treatment for IgE-mediated allergy. In this review, we describe how CpG-ODN-based therapies for allergic diseases, despite having shown limited success in the past, can still be exploited further as an adjuvant or immune modulator in the context of AIT and deserves additional attention. Here, we discuss the past and current knowledge, which highlights CpG-ODN as a potential adjuvant to be reevaluated for the enhancement of AIT when used in appropriate conditions and formulations.
Collapse
Affiliation(s)
- Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Cathy Leonard
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ludger Klimek
- Centre for Rhinology and Allergology, Wiesbaden, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Renner K, Metz S, Metzger AM, Neumayer S, Schmidbauer K, Talke Y, Buchtler S, Halbritter D, Mack M. Expression of IL-3 receptors and impact of IL-3 on human T and B cells. Cell Immunol 2018; 334:49-60. [DOI: 10.1016/j.cellimm.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023]
|
4
|
Baptista BJA, Granato A, Canto FB, Montalvão F, Tostes L, de Matos Guedes HL, Coutinho A, Bellio M, Vale AM, Nobrega A. TLR9 Signaling Suppresses the Canonical Plasma Cell Differentiation Program in Follicular B Cells. Front Immunol 2018; 9:2281. [PMID: 30546358 PMCID: PMC6279956 DOI: 10.3389/fimmu.2018.02281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023] Open
Abstract
The relative potency and quality of mouse B cell response to Toll-like receptors (TLRs) signaling varies significantly depending on the B cell subset and on the TLR member being engaged. Although it has been shown that marginal zone cells respond faster than follicular (FO) splenic B cells to TLR4 stimulus, FO B cells retain full capacity to proliferate and generate plasmablasts and plasma cells (PBs/PCs) with 2–3 days delayed kinetics. It is not clear whether this scenario could be extended to other members of the TLR family. Here, using quantitative cell culture conditions optimized for B cell growth and differentiation, we show that TLR9 signaling by CpG, while promoting vigorous proliferation, completely fails to induce differentiation of FO B cells into PBs/PCs. Little or absent Ig secretion following TLR9 stimulus was accompanied by lack of expression of cell surface markers and canonical transcription factors involved in PB/PC differentiation. Moreover, not only TLR9 did not induce plasmocyte differentiation, but it also strongly inhibited the massive PB/PC differentiation of FO B cells triggered by LPS/TLR4. Our study reveals unexpected opposite roles for TLR4 and TLR9 in the control of plasma cell differentiation program and disagrees with previous conclusions obtained in high-density cultures conditions on the generation of plasmocytes by TRL9 signaling. The potential implications of these findings on the role of TLR9 in controlling self-tolerance, clonal sizes and regulation of humoral responses are discussed.
Collapse
Affiliation(s)
| | - Alessandra Granato
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio B Canto
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabricio Montalvão
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Tostes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert L de Matos Guedes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Bellio
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre M Vale
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Nobrega
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Lee SH, Park SR. Toll-like Receptor 1/2 Agonist Pam3CSK4 Suppresses Lipopolysaccharide-driven IgG1 Production while Enhancing IgG2a Production by B Cells. Immune Netw 2018; 18:e10. [PMID: 29503740 PMCID: PMC5833117 DOI: 10.4110/in.2018.18.e10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Interaction between pathogen-associated molecular patterns and pattern recognition receptors triggers innate and adaptive immune responses. Several studies have reported that toll-like receptors (TLRs) are involved in B cell proliferation, differentiation, and Ig class switch recombination (CSR). However, roles of TLRs in B cell activation and differentiation are not completely understood. In this study, we investigated the direct effect of stimulation of TLR1/2 agonist Pam3CSK4 on mouse B cell viability, proliferation, activation, Ig production, and Ig CSR in vitro. Treatment with 0.5 µg/ml of Pam3CSK4 only barely induced IgG1 production although it enhanced B cell viability. In addition, high-dosage Pam3CSK4 diminished IgG1 production in a dose-dependent manner, whereas the production of other Igs, cell viability, and proliferation increased. Pam3CSK4 additively increased TLR4 agonist lipopolysaccharide (LPS)-induced mouse B cell growth and activation. However, interestingly, Pam3CSK4 abrogated LPS-induced IgG1 production but enhanced LPS-induced IgG2a production. Further, Pam3CSK4 decreased LPS-induced germline γ1 transcripts (GLTγ1)/GLTε expression but increased GLTγ2a expression. On the other hand, Pam3CSK4 had no effect on LPS-induced plasma cell differentiation. Taken together, these results suggest that TLR1/2 agonist Pam3CSK4 acts as a potent mouse B cell mitogen in combination with TLR4 agonist LPS, but these 2 different TLR agonists play diverse roles in regulating the Ig CSR of each isotype, particularly IgG1/IgE and IgG2a.
Collapse
Affiliation(s)
- Sang-Hoon Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.,Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
6
|
Seo BS, Park HY, Yoon HK, Yoo YC, Lee J, Park SR. Dectin-1 agonist selectively induces IgG1 class switching by LPS-activated mouse B cells. Immunol Lett 2016; 178:114-21. [DOI: 10.1016/j.imlet.2016.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 11/28/2022]
|
7
|
Park HY, Lee SH, Lee KS, Yoon HK, Yoo YC, Lee J, Choi JE, Kim PH, Park SR. Ginsenoside Rg1 and 20(S)-Rg3 Induce IgA Production by Mouse B Cells. Immune Netw 2015; 15:331-6. [PMID: 26770188 PMCID: PMC4700410 DOI: 10.4110/in.2015.15.6.331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023] Open
Abstract
Ginsenosides are the major components of ginseng, which is known to modulate blood pressure, metabolism, and immune function, and has been used to treat various diseases. It has been reported that ginseng and several ginsenosides have immunoregulatory effects on the innate and T cell-mediated immune response. However, their effects on the humoral immune response have not been fully explored. The present study examined the direct effects of red ginseng extract (RGE) and ginsenosides on mouse B cell proliferation and on antibody production and the expression of germline transcripts (GLT) by mouse B cells in vitro. RGE slightly reduced B cell proliferation, but increased IgA production by LPS-stimulated B cells. Furthermore, ginsenoside Rg1 and 20(S)-Rg3 selectively induced IgA production and expression of GLTα transcripts by LPS-stimulated B cells. Collectively, these results suggest that ginsenoside Rg1 and 20(S)-Rg3 can drive the differentiation of B cells into IgA-producing cells through the selective induction of GLTα expression.
Collapse
Affiliation(s)
- Ha-Yan Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Sang-Hoon Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Kyu-Seon Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Hee-Kyung Yoon
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Yung-Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Junglim Lee
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Jae Eul Choi
- College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience, School of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea.; Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| |
Collapse
|
8
|
Seo BS, Lee SH, Lee JE, Yoo YC, Lee J, Park SR. Dectin-1 Stimulation Selectively Reinforces LPS-driven IgG1 Production by Mouse B Cells. Immune Netw 2013; 13:205-12. [PMID: 24198746 PMCID: PMC3817302 DOI: 10.4110/in.2013.13.5.205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 09/17/2013] [Accepted: 09/24/2013] [Indexed: 12/16/2022] Open
Abstract
Dectin-1, which specifically recognizes β-glucan of fungal cell walls, is a non-Toll-like receptor (TLR) pattern recognition receptor and a representative of C-type lectin receptors (CLRs). The importance of Dectin-1 in innate immune cells, such as dendritic cells and macrophages, has previously been well studied. However, the function of Dectin-1 in B cells is very poorly understood. To determine the role of Dectin-1 in B cell activation, we first investigated whether mouse B cells express Dectin-1 and then assessed the effect of Dectin-1 stimulation on B cell proliferation and antibody production. Mouse B cells express mRNAs encoding CLRs, including Dectin-1, and surface Dectin-1 was expressed in B cells of C57BL/6 rather than BALB/c strain. Dectin-1 agonists, heat-killed Candida albicans (HKCA) and heat-killed Saccharomyces cerevisiae (HKSC), alone induced B cell proliferation but not antibody production. Interestingly, HKSC, HKCA, and depleted zymosan (a selective Dectin-1 agonist) selectively enhanced LPS-driven IgG1 production. Taken together, these results suggest that, during fungal infection, β-glucan-stimulated Dectin-1 may cooperate with TLR4 to specifically enhance IgG1 production by mouse B cells.
Collapse
Affiliation(s)
- Beom-Seok Seo
- Department of Microbiology, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | | | | | | | | | | |
Collapse
|