1
|
Dai X, Li J, Chen Y, Ostrikov KK. When Onco-Immunotherapy Meets Cold Atmospheric Plasma: Implications on CAR-T Therapies. Front Oncol 2022; 12:837995. [PMID: 35280746 PMCID: PMC8905244 DOI: 10.3389/fonc.2022.837995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
T cells engineered with chimeric antigen receptors (CAR) have demonstrated its widespread efficacy as a targeted immunotherapeutic modality. Yet, concerns on its specificity, efficacy and generalization prevented it from being established into a first-line approach against cancers. By reviewing challenges limiting its clinical application, ongoing efforts trying to resolve them, and opportunities that emerging oncotherapeutic modalities may bring to temper these challenges, we conclude that careful CAR design should be done to avoid the off-tumor effect, enhance the efficacy of solid tumor treatment, improve product comparability, and resolve problems such as differential efficacies of co-stimulatory molecules, cytokine storm, tumor lysis syndrome, myelosuppression and severe hepatotoxicity. As a promising solution, we propose potential synergies between CAR-T therapies and cold atmospheric plasma, an emerging onco-therapeutic strategy relying on reactive species, towards improved therapeutic efficacies and enhanced safety that deserve extensive investigations.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,CAPsoul Biotechnology Company, Ltd, Beijing, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Provincial Orthopedic Institute, Zhengzhou, China
| | - Yiming Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Jain S, Kumar S. Cancer immunotherapy: dawn of the death of cancer? Int Rev Immunol 2020; 39:1-18. [PMID: 32530336 DOI: 10.1080/08830185.2020.1775827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
Cancer is one of the proficient evaders of the immune system which claims millions of lives every year. Developing therapeutics against cancer is extremely challenging as cancer involves aberrations in self, most of which are not detected by the immune system. Conventional therapeutics like chemotherapy, radiotherapy are not only toxic but they significantly lower the quality of life. Immunotherapy, which gained momentum in the 20th century, is emerging as one of the alternatives to the conventional therapies and is relatively less harmful but more costly. This review explores the modern advances in an array of such therapies and try to compare them along with a limited analysis of concerns associated with them.
Collapse
Affiliation(s)
- Sidhant Jain
- Department of Zoology, University of Delhi, Delhi, India
| | - Sahil Kumar
- Department of Pharmacology, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
3
|
Wang Y, Yang X, Yu Y, Xu Z, Sun Y, Liu H, Cheng J, Liu M, Sha B, Li L, Ding N, Li Z, Jin H, Qian Q. Immunotherapy of patient with hepatocellular carcinoma using cytotoxic T lymphocytes ex vivo activated with tumor antigen-pulsed dendritic cells. J Cancer 2018; 9:275-287. [PMID: 29344274 PMCID: PMC5771335 DOI: 10.7150/jca.22176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022] Open
Abstract
Purpose The aim of this study was to evaluate the clinical response of immunotherapy with dendritic cell-cytotoxic T lymphocytes (DC-CTLs) in patients with hepatocellular carcinoma (HCC). Method Sixty-eight patients with a confirmed diagnosis of HCC and who received follow-up until December 2015 were enrolled. We measured immune phenotypes of DCs and activated T cells using flow cytometry and clinical indexes using an electrochemiluminescence method. Results DCs exhibited up-regulation of the maturation markers CD83, CD80, CD11c, and CD86 on day8. Levels of IFN-γ and TNF-α were higher in the DCs pulsed with tumor-associated antigens (TAAs) than in DCs with a non-proliferative recombinant adenovirus. The percentage of regulatory T cells (Tregs) decreased in patients after DC-CTLs therapy. In addition, serum levels of AFP, AFP-L3, ALT, and CA19-9 were significantly reduced in these patients. Quality of life was improved, especially on physical functioning scales. Median overall survival (OS) and progression-free survival (PFS) were 8.2 months and 4.3 months, respectively, for the control group and 12.8 months and 9 months, respectively, for the DC-CTL group. Patients treated with DC-CTLs therapy showed a statistically significant PFS and OS curve (OS: p=0.016; PFS: p<0.0001). In addition, no serious adverse reactions were observed. Conclusion This study indicated that Tregs, as well as serum levels of AFP, AFP-L3, ALT, and CA19-9, which were correlated with a poor prognosis, decreased after DC-CTL treatments. The OS, PFS and the quality of life of HCC patients partially improved.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.,Department of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xijing Yang
- Department of Biotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Yi Yu
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Zenghui Xu
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Yan Sun
- Shanghai Cell Therapy Research Institute, Qianyang Road 75A, Shanghai, 201805, China
| | - Hui Liu
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Jingbo Cheng
- Shanghai Cell Therapy Research Institute, Qianyang Road 75A, Shanghai, 201805, China
| | - Min Liu
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Bibo Sha
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Linfang Li
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Na Ding
- Shanghai Cell Therapy Research Institute, Qianyang Road 75A, Shanghai, 201805, China
| | - Zhong Li
- Shanghai Cell Therapy Research Institute, Qianyang Road 75A, Shanghai, 201805, China
| | - Huajun Jin
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Qijun Qian
- Department of Gene and Viral Therapy Laboratory, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.,Department of Biotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China.,Shanghai Cell Therapy Research Institute, Qianyang Road 75A, Shanghai, 201805, China.,Ningbo 5 th Hospital (Ningbo Cancer Hospital), Zhuangshi Avenue 1166, Ningbo, 315201, China
| |
Collapse
|
4
|
Qu LL, Qin HF, Gao HJ, Liu XQ. Combination of icotinib, surgery, and internal-radiotherapy of a patient with lung cancer severely metastasized to the vertebrae bones with EGFR mutation: a case report. Onco Targets Ther 2015; 8:1271-6. [PMID: 26082644 PMCID: PMC4459626 DOI: 10.2147/ott.s80012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A 48-year-old Chinese female was referred to us regarding EGFR-mutated advanced non-small cell lung cancer, and metastasis to left scapula and vertebrae bones which caused pathological fracture at T8 and T10 thoracic vertebrae. An aggressive combined therapy with icotinib, vertebrae operation, and radioactive particle implantation and immunotherapy was proposed to prevent paraplegia, relieve pain, and control the overall and local tumor lesions. No postoperative symptoms were seen after surgery, and the pain was significantly relieved. Icotinib merited a 31-month partial response with grade 1 diarrhea as its drug-related adverse event. High dose of icotinib was administered after pelvis lesion progression for 3 months with good tolerance. Combination therapy of icotinib, surgery, and internal radiation for metastases of the vertebrae bones from non-small cell lung cancer seems to be a very promising technique both for sufficient pain relief and for local control of the tumor, vertebrae operation can be an encouraging option for patients with EFGR positive mutation and good prognosis indicator.
Collapse
Affiliation(s)
- Li-Li Qu
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Science, Beijing, People's Republic of China
| | - Hai-Feng Qin
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Science, Beijing, People's Republic of China
| | - Hong-Jun Gao
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Science, Beijing, People's Republic of China
| | - Xiao-Qing Liu
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Science, Beijing, People's Republic of China
| |
Collapse
|
5
|
Wang M, Cao JX, Pan JH, Liu YS, Xu BL, Li D, Zhang XY, Li JL, Liu JL, Wang HB, Wang ZX. Adoptive immunotherapy of cytokine-induced killer cell therapy in the treatment of non-small cell lung cancer. PLoS One 2014; 9:e112662. [PMID: 25412106 PMCID: PMC4239020 DOI: 10.1371/journal.pone.0112662] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/23/2014] [Indexed: 12/28/2022] Open
Abstract
AIM The aim of this study was to systemically evaluate the therapeutic efficacy of cytokine-induced killer (CIK) cells for the treatment of non-small cell lung cancer. MATERIALS AND METHODS A computerized search of randomized controlled trials for CIK cell-based therapy was performed. The overall survival, clinical response rate, immunological assessment and side effects were evaluated. RESULTS Overall, 17 randomized controlled trials of non-small cell lung cancer (NSCLC) with a total of 1172 patients were included in the present analysis. Our study showed that the CIK cell therapy significantly improved the objective response rate and overall survival compared to the non-CIK cell-treated group. After CIK combined therapy, we observed substantially increased percentages of CD3+, CD4+, CD4+CD8+, CD3+CD56+ and NK cells, whereas significant decreases were noted in the percentage of CD8+ and regulatory T cell (Treg) subgroups. A significant increase in Ag-NORs was observed in the CIK-treated patient group (p = 0.00001), whereas carcinoembryonic antigen (CEA) was more likely to be reduced to a normal level after CIK treatment (p = 0.0008). Of the possible major side effects, only the incidence of fever in the CIK group was significantly higher compared to the group that received chemotherapy alone. CONCLUSION The CIK cell combined therapy demonstrated significant superiority in the overall survival, clinical response rate, and T lymphocytes responses and did not present any evidence of major adverse events in patients with NSCLC.
Collapse
Affiliation(s)
- Min Wang
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Jun-Xia Cao
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Jian-Hong Pan
- Department of Biostatistics, Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, China
| | - Yi-Shan Liu
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Bei-Lei Xu
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Duo Li
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Xiao-Yan Zhang
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Jun-Li Li
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Jin-Long Liu
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Hai-Bo Wang
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| | - Zheng-Xu Wang
- Biotherapy Center, General Hospital of Beijing Military Command, Beijing, China
| |
Collapse
|
6
|
Wang X, Zhang FC, Zhao HY, Lu XL, Sun Y, Xiong ZY, Jiang XB. Human IP10-scFv and DC-induced CTL synergistically inhibit the growth of glioma in a xenograft model. Tumour Biol 2014; 35:7781-91. [PMID: 24816916 PMCID: PMC4158415 DOI: 10.1007/s13277-014-1867-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/18/2014] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) mutant of EGFRvIII is highly expressed in glioma cells, and the EGFRvIII-specific dendritic cell (DC)-induced tumor antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) may hold promise in cancer immunotherapy. Interferon (IFN)-γ-inducible protein (IP)-10 (IP-10) is a potent inhibitor of angiogenesis and can recruit CXCR3(+) T cells, including CD8(+) T cells, which are important for the control of tumor growth. In this study, we assessed if the combination of IP10-EGFRvIIIscFv with DC-induced CTLs would improve the therapeutic antitumor efficacy. IP10-scFv was generated by linking the human IP-10 gene with the DNA fragment for anti-EGFRvIIIscFv with a (Gly4Ser)3 flexible linker, purified by affinity chromatography, and characterized for its anti-EGFRvIII immunoreactivity and chemotactic activity. DCs were isolated from human peripheral blood monocyte cells and pulsed with EGFRvIII-peptide, then co-cultured with autologous CD8(+) T cells. BALB/c-nu mice were inoculated with human glioma U87-EGFRvIII cells in the brain and treated intracranially with IP10-scFv and/or intravenously with DC-induced CTLs for evaluating the therapeutic effect. Treatment with both IP10-scFv and EGFRvIII peptide-pulsed, DC-induced CTL synergistically inhibited the growth of glioma and prolonged the survival of tumor-bearing mice, which was accompanied by the inhibition of tumor angiogenesis and enhancement of cytotoxicity, thereby increasing the numbers of brain-infiltrating lymphocytes (BILs) and prolonging the residence time of CTLs in the tumor.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Fang-Cheng Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Xiao-Ling Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Zhi-Yong Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| |
Collapse
|
7
|
Characterization of T cell phenotype and function in a double transgenic (collagen-specific TCR/HLA-DR1) humanized model of arthritis. Arthritis Res Ther 2014; 16:R7. [PMID: 24405551 PMCID: PMC3978884 DOI: 10.1186/ar4433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 12/27/2013] [Indexed: 12/22/2022] Open
Abstract
Introduction T cells orchestrate joint inflammation in rheumatoid arthritis (RA), yet they are difficult to study due to the small numbers of antigen-specific cells. The goal of this study was to characterize a new humanized model of autoimmune arthritis and to describe the phenotypic and functional changes that occur in autoimmune T cells following the induction of pathological events. Methods We developed a double transgenic mouse containing both the HLA-DR1 transgene and an HLA-DR1-restricted collagen-specific TCR in order to obtain large numbers of antigen-specific T cells that can be used for immunologic studies. Results In vitro, CII-specific T cells from this mouse proliferated vigorously in response to the CII immunodominant peptide A2 and the cells altered their phenotype to become predominately CD62Llow and CD44high “activated” T cells. The response was accompanied by the production of Th1, Th2, and Th17-type cytokines. Following immunization with bovine CII/CFA, these mice develop an accelerated arthritis compared to single transgenic HLA-DR1 mice. On the other hand, when the mice were treated orally with the analog peptide A12, (a suppressive analog of collagen we have previously described), arthritis was significantly suppressed, despite the fact that >90% of the CD4+ T cells express the TCR Tg. In GALT tissues taken from the A12-treated mice, IL-2, IFN-γ, and IL-17 production to the autoimmune collagen determinant dropped while high levels of IL-10 and IL-4 were produced. Conclusions We have developed a humanized model of autoimmune arthritis that will be useful for the study of T cell directed therapies as well as T cell mediated mechanisms of autoimmune diseases.
Collapse
|