1
|
Balasco N, Tagliamonte M, Buonaguro L, Vitagliano L, Paladino A. Structural and Dynamic-Based Characterization of the Recognition Patterns of E7 and TRP-2 Epitopes by MHC Class I Receptors through Computational Approaches. Int J Mol Sci 2024; 25:1384. [PMID: 38338663 PMCID: PMC10855917 DOI: 10.3390/ijms25031384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
A detailed comprehension of MHC-epitope recognition is essential for the design and development of new antigens that could be effectively used in immunotherapy. Yet, the high variability of the peptide together with the large abundance of MHC variants binding makes the process highly specific and large-scale characterizations extremely challenging by standard experimental techniques. Taking advantage of the striking predictive accuracy of AlphaFold, we report a structural and dynamic-based strategy to gain insights into the molecular basis that drives the recognition and interaction of MHC class I in the immune response triggered by pathogens and/or tumor-derived peptides. Here, we investigated at the atomic level the recognition of E7 and TRP-2 epitopes to their known receptors, thus offering a structural explanation for the different binding preferences of the studied receptors for specific residues in certain positions of the antigen sequences. Moreover, our analysis provides clues on the determinants that dictate the affinity of the same epitope with different receptors. Collectively, the data here presented indicate the reliability of the approach that can be straightforwardly extended to a large number of related systems.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology IBPM-CNR c/o Department Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Maria Tagliamonte
- Immunological Models Lab, Istituto Nazionale Tumori—Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)—“Fond. G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.T.); (L.B.)
| | - Luigi Buonaguro
- Immunological Models Lab, Istituto Nazionale Tumori—Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)—“Fond. G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy; (M.T.); (L.B.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging IBB-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy;
| | - Antonella Paladino
- Institute of Biostructures and Bioimaging IBB-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy;
| |
Collapse
|
2
|
Hsu CW, Huang R, Khuc T, Shou D, Bullock J, Grooby S, Griffin S, Zou C, Little A, Astley H, Xia M. Identification of approved and investigational drugs that inhibit hypoxia-inducible factor-1 signaling. Oncotarget 2016; 7:8172-83. [PMID: 26882567 PMCID: PMC4884984 DOI: 10.18632/oncotarget.6995] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022] Open
Abstract
One of the requirements for tumor development is blood supply, most often driven by hypoxia-induced angiogenesis. Hypoxia induces the stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), which induces expression of an angiogenic factor, vascular endothelial growth factor (VEGF). The purpose of this study is to validate a new screening platform combined with orthogonal assays to rapidly identify HIF-1 inhibitors and to evaluate the effectiveness of approved drugs on modulating HIF-1 signaling. We generated an endogenous HIF-1α-NanoLuc luciferase reporter allele in the human HCT116 colon cancer cell line using genome editing and screened a panel of small interfering RNAs (siRNAs) to 960 druggable targets and approximately 2,500 drugs on a quantitative high-throughput screening (qHTS) platform. Selected compounds were further investigated with secondary assays to confirm their anti-HIF activity and to study their mode of action. The qHTS assay identified over 300 drugs that inhibited HIF-1α-NanoLuc expression. The siRNA screening results supported the effectiveness of several target-specific inhibitors. Moreover, the identified HIF-1 inhibitors, such as mycophenolate mofetil, niclosamide, and trametinib, were able to suppress cancer cell proliferation and angiogenesis. Our study indicates that blocking the mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K) pathways effectively inhibits hypoxia-induced HIF-1α accumulation and HIF-1α transactivation and that proteasome inhibitors induce accumulation and decrease transcriptional activity of HIF-1α. These findings underline the importance of developing a battery of robust assay platforms and confirmation studies that focus on endogenous protein targets so that only relevant and reliable data will be taken into pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Chia-Wen Hsu
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ruili Huang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Thai Khuc
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - David Shou
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Sue Griffin
- Horizon Discovery Ltd., Waterbeach, Cambridge, UK
| | - Chaozhong Zou
- American Type Culture Collection, Gaithersburg, MD, USA
| | | | - Holly Astley
- Horizon Discovery Ltd., Waterbeach, Cambridge, UK
| | - Menghang Xia
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|