1
|
Kim E, Yi YS, Son YJ, Han SY, Kim DH, Nam G, Hossain MA, Kim JH, Park J, Cho JY. BIOGF1K, a compound K-rich fraction of ginseng, plays an antiinflammatory role by targeting an activator protein-1 signaling pathway in RAW264.7 macrophage-like cells. J Ginseng Res 2018; 42:233-237. [PMID: 29719472 PMCID: PMC5926502 DOI: 10.1016/j.jgr.2018.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Republic of Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon, Republic of Korea
| | - Sang Yun Han
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong Hyun Kim
- Material Lab, Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Republic of Korea
| | - Gibaeg Nam
- Material Lab, Basic Research & Innovation Division, R&D Center, AmorePacific Corporation, Republic of Korea
| | | | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
- Corresponding author. College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan 54596, Republic of Korea.
| | - Junseong Park
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Republic of Korea
- Corresponding author. Department of Engineering Chemistry, Chungbuk National University, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Corresponding author. Department of Genetic Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Yeh MY, Shih YL, Chung HY, Chou J, Lu HF, Liu CH, Liu JY, Huang WW, Peng SF, Wu LY, Chung JG. Chitosan promotes immune responses, ameliorating total mature white blood cell numbers, but increases glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, and ameliorates lactate dehydrogenase levels in leukemia mice in vivo. Mol Med Rep 2017; 16:2483-2490. [PMID: 28677783 PMCID: PMC5547931 DOI: 10.3892/mmr.2017.6923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to investigate the effect of chitosan (a naturally derived polymer) on the immune responses and glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) levels in WEHI-3 cell-generated leukemia mice. Mice were divided into control, WEHI-3 control, acetic acid (vehicle)-treated, and 5 and 20 mg/kg chitosan-treated groups. Mice were subsequently weighed, blood was collected, and liver and spleen samples were isolated and weighed. Blood samples were measured for cell markers, the spleen underwent phagocytosis and natural killer (NK) cell activity examination, and cell proliferation was analyzed by flow cytometry. Chitosan did not significantly affect the weights of body, liver and spleen at 5 and 20 mg/kg treatment. Chitosan increased the percentage of CD3 (T cells marker), decreased the levels of CD19 (B-cell marker) and CD11b at 5 mg/kg treatment, and decreased the levels of Mac-3 at 5 and 20 mg/kg treatment. Chitosan significantly increased macrophage phagocytosis of PBMCs, but did not significantly affect macrophage phagocytosis in the peritoneal cavity. Chitosan treatment did not significantly affect the cytotoxic activity of NK cells, and also did not affect T- and B-cell proliferation. Chitosan significantly increased total white blood cell numbers, and GOT and GPT activities were both significantly increased. However, chitosan did not significantly affect LDH activity in leukemia mice. Chitosan may aid in future studies on improving immune responses in the treatment of leukemia.
Collapse
Affiliation(s)
- Ming-Yang Yeh
- Office of Director, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Yung-Luen Shih
- Department of School of Medicine, Fu‑Jen Catholic University, New Taipei 242, Taiwan, R.O.C
| | - Hsueh-Yu Chung
- Jen‑Teh Junior College of Medicine, Nursing and Management, Miaoli County 356, Taiwan, R.O.C
| | - Jason Chou
- Department of Anatomical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Chia-Hui Liu
- The Center of General Education, Chia‑Nan University of Pharmacy and Science, Tainan 717, Taiwan, R.O.C
| | - Jia-You Liu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan, R.O.C
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Lung-Yuan Wu
- The School of Chinese Medicine for Post‑Baccalaureate, I‑Shou University, Kaohsiung 840, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
3
|
Yang S, Kim Y, Jeong D, Kim JH, Kim S, Son YJ, Yoo BC, Jeong EJ, Kim TW, Lee ISH, Cho JY. Pyrrole-Derivative of Chalcone, ( E)-3-Phenyl-1-(2-Pyrrolyl)-2-Propenone, Inhibits Inflammatory Responses via Inhibition of Src, Syk, and TAK1 Kinase Activities. Biomol Ther (Seoul) 2016; 24:595-603. [PMID: 27469142 PMCID: PMC5098538 DOI: 10.4062/biomolther.2016.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/02/2016] [Accepted: 04/21/2016] [Indexed: 12/26/2022] Open
Abstract
(E)-3-Phenyl-1-(2-pyrrolyl)-2-propenone (PPP) is a pyrrole derivative of chalcone, in which the B-ring of chalcone linked to β-carbon is replaced by pyrrole group. While pyrrole has been studied for possible Src inhibition activity, chalcone, especially the substituents on the B-ring, has shown pharmaceutical, anti-inflammatory, and anti-oxidant properties via inhibition of NF-κB activity. Our study is aimed to investigate whether this novel synthetic compound retains or enhances the pharmaceutically beneficial activities from the both structures. For this purpose, inflammatory responses of lipopolysaccharide (LPS)-treated RAW264.7 cells were analyzed. Nitric oxide (NO) production, inducible NO synthase (iNOS) and tumor necrosis factor-α (TNF-α) mRNA expression, and the intracellular inflammatory signaling cascade were measured. Interestingly, PPP strongly inhibited NO release in a dose-dependent manner. To further investigate this anti-inflammatory activity, we identified molecular pathways by immunoblot analyses of nuclear fractions and whole cell lysates prepared from LPS-stimulated RAW264.7 cells with or without PPP pretreatment. The nuclear levels of p50, c-Jun, and c-Fos were significantly inhibited when cells were exposed to PPP. Moreover, according to the luciferase reporter gene assay after cotransfection with either TRIF or MyD88 in HEK293 cells, NF-κB-mediated luciferase activity dose-dependently diminished. Additionally, it was confirmed that PPP dampens the upstream signaling cascade of NF-κB and AP-1 activation. Thus, PPP inhibited Syk, Src, and TAK1 activities induced by LPS or induced by overexpression of these genes. Therefore, our results suggest that PPP displays anti-inflammatory activity via inhibition of Syk, Src, and TAK1 activity, which may be developed as a novel anti-inflammatory drug.
Collapse
Affiliation(s)
- Sungjae Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jun Ho Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunggyu Kim
- Research and Business Foundation, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Jin Son
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Gyeonggi 10408, Republic of Korea
| | - Eun Jeong Jeong
- Department of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tae Woong Kim
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - In-Sook Han Lee
- Department of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Kosik-Bogacka DI, Baranowska-Bosiacka I, Kolasa-Wołosiuk A, Lanocha-Arendarczyk N, Gutowska I, Korbecki J, Namięta H, Rotter I. The inflammatory effect of infection with Hymenolepis diminuta via the increased expression and activity of COX-1 and COX-2 in the rat jejunum and colon. Exp Parasitol 2016; 169:69-76. [PMID: 27466058 DOI: 10.1016/j.exppara.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 01/10/2023]
Abstract
The aim of this study was to determine whether Hymenolepis diminuta may affect the expression and activity of cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2), resulting in the altered levels of their main products - prostaglandins (PGE2) and thromboxane B2 (TXB2). The study used the same experimental model as in our previous studies in which we had observed changes in the transepithelial ion transport, tight junctions and in the indicators of oxidative stress, in both small and large intestines of rats infected with H. diminuta. In this paper, we investigated not only the site of immediate presence of the tapeworm (jejunum), but also a distant site (colon). Inflammation related to H. diminuta infection is associated with the increased expression and activation of cyclooxygenase (COX), enzyme responsible for the synthesis of PGE2 and TXB2, local hormones contributing to the enhanced inflammatory reaction in the jejunum and colon in the infected rats. The increased COX expression and activity is probably caused by the increased levels of free radicals and the weakening of the host's antioxidant defense induced by the presence of the parasite. Our immunohistochemical analysis showed that H. diminuta infection affected not only the intensity of the immunodetection of COX but also the enzyme protein localization within intestinal epithelial cells - from the entire cytoplasm to apical/basal regions of cells, or even to the nucleus.
Collapse
Affiliation(s)
- D I Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland.
| | - I Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - A Kolasa-Wołosiuk
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland
| | - N Lanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland
| | - I Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - J Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - H Namięta
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland
| | - I Rotter
- Independent Laboratory of Medical Rehabilitation, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
5
|
Kim SH, Park JG, Hong YD, Kim E, Baik KS, Yoon DH, Kim S, Lee MN, Rho HS, Shin SS, Cho JY. Src/Syk/IRAK1-targeted anti-inflammatory action of Torreya nucifera butanol fraction in lipopolysaccharide-activated RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:167-176. [PMID: 27178629 DOI: 10.1016/j.jep.2016.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Seed of Torreya nucifera (L.) Siebold & Zucc is used to treat several diseases in Asia. Reports document that T. nucifera has anti-cancer, anti-inflammatory, anti-oxidative activities. In spite of numerous findings on its pharmacological effects, the understanding of the molecular inhibitory mechanisms of the plant remains to be studied. Therefore, we aimed to explore in vitro anti-inflammatory mechanisms of ethyl acetate fraction (Tn-EE-BF) prepared from the seed of T. nucifera in LPS-stimulated macrophage inflammatory responses. MATERIALS AND METHODS For this purpose, we measured nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated macrophages. Additionally, using RT-PCR, luciferase reporter gene assay, immunoblotting analysis, and kinase assay, the levels of inflammatory genes, transcription factors, and inflammatory signal-regulatory proteins were investigated. Finally, the constituent of Tn-EE-BF was identified using HPLC. RESULTS Tn-EE-BF inhibits NO and PGE2 production and also blocks mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in a dose dependent manner. Tn-EE-BF reduces nuclear levels of the transcriptional factors NF-κB (p65) and AP-1 (c-Jun and FRA-1). Surprisingly, we found that Tn-EE-BF inhibits phosphorylation levels of Src and Syk in the NF-κB pathway, as well as, IRAK1 at the protein level, part of the AP-1 pathway. By kinase assay, we confirmed that Src, Syk, and IRAK1 are suppressed directly. HPLC analysis indicates that arctigenin, amentoflavone, and quercetin may be active components with anti-inflammatory activities. CONCLUSION Tn-EE-BF exhibits anti-inflammatory activities by direct inhibition of Src/Syk/NF-κB and IRAK1/AP-1.
Collapse
Affiliation(s)
- Shi Hyoung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Gwang Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Deog Hong
- Longevity Science Research Team, AmorePacific R&D Unit, Yongin 17074, Republic of Korea
| | - Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwang-Soo Baik
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Deok Hyo Yoon
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sunggyu Kim
- Research and Business Foundation, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Nam Lee
- Department of Food and Nutrition, School of Foodservice Industry, Chungkang College of Cultural industries, Icheon 17390, Republic of Korea
| | - Ho Sik Rho
- Longevity Science Research Team, AmorePacific R&D Unit, Yongin 17074, Republic of Korea
| | - Song Seok Shin
- Longevity Science Research Team, AmorePacific R&D Unit, Yongin 17074, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Syk and IRAK1 Contribute to Immunopharmacological Activities of Anthraquinone-2-carboxlic Acid. Molecules 2016; 21:molecules21060809. [PMID: 27338330 PMCID: PMC6272897 DOI: 10.3390/molecules21060809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 12/12/2022] Open
Abstract
Anthraquinone-2-carboxlic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA) was identified as one of the major anthraquinones in Brazilian taheebo. Since there was no report explaining its immunopharmacological actions, in this study, we aimed to investigate the molecular mechanism of AQCA-mediated anti-inflammatory activity using reporter gene assays, kinase assays, immunoblot analyses, and overexpression strategies with lipopolysaccharide (LPS)-treated macrophages. AQCA was found to suppress the release of nitric oxide (NO) and prostaglandin (PG) E2 from LPS-treated peritoneal macrophages without displaying any toxic side effects. Molecular analysis revealed that AQCA was able to inhibit the activation of the nuclear factor (NF)-κB and activator protein (AP)-1 pathways by direct suppression of upstream signaling enzymes including interleukin-1 receptor-associated kinase 1 (IRAK1) and spleen tyrosine kinase (Syk). Therefore, our data strongly suggest that AQCA-mediated suppression of inflammatory responses could be managed by a direct interference of signaling cascades including IRAK and Syk, linked to the activation of NF-κB and AP-1.
Collapse
|
7
|
Yu T, Rhee MH, Lee J, Kim SH, Yang Y, Kim HG, Kim Y, Kim C, Kwak YS, Kim JH, Cho JY. Ginsenoside Rc from Korean Red Ginseng (Panax ginseng C.A. Meyer) Attenuates Inflammatory Symptoms of Gastritis, Hepatitis and Arthritis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:595-615. [DOI: 10.1142/s0192415x16500336] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Korean Red Ginseng (KRG) is an herbal medicine prescribed worldwide that is prepared from Panax ginseng C.A. Meyer (Araliaceae). Out of ginseng’s various components, ginsenosides are regarded as the major ingredients, exhibiting anticancer and anti-inflammatory activities. Although recent studies have focused on understanding the anti-inflammatory activities of KRG, compounds that are major anti-inflammatory components, precisely how these can suppress various inflammatory processes has not been fully elucidated yet. In this study, we aimed to identify inhibitory saponins, to evaluate the in vivo efficacy of the saponins, and to understand the inhibitory mechanisms. To do this, we employed in vitro lipopolysaccharide-treated macrophages and in vivo inflammatory mouse conditions, such as collagen (type II)-induced arthritis (CIA), EtOH/HCl-induced gastritis, and lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-triggered hepatitis. Molecular mechanisms were also verified by real-time PCR, immunoblotting analysis, and reporter gene assays. Out of all the ginsenosides, ginsenoside Rc (G-Rc) showed the highest inhibitory activity against the expression of tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-1[Formula: see text], and interferons (IFNs). Similarly, this compound attenuated inflammatory symptoms in CIA, EtOH/HCl-mediated gastritis, and LPS/D-galactosamine (D-GalN)-triggered hepatitis without altering toxicological parameters, and without inducing gastric irritation. These anti-inflammatory effects were accompanied by the suppression of TNF-[Formula: see text] and IL-6 production and the induction of anti-inflammatory cytokine IL-10 in mice with CIA. G-Rc also attenuated the increased levels of luciferase activity by IRF-3 and AP-1 but not NF-[Formula: see text]B. In support of this phenomenon, G-Rc reduced TBK1, IRF-3, and ATF2 phosphorylation in the joint and liver tissues of mice with hepatitis. Therefore, our results strongly suggest that G-Rc may be a major component of KRG with useful anti-inflammatory properties due to its suppression of IRF-3 and AP-1 pathways.
Collapse
Affiliation(s)
- Tao Yu
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Medical College, Qingdao University, Qingdao 266021, P. R. China
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, 2066 Seobu-ro Jangan-gu, Suwon 16419, Republic of Korea
| | - Seung Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea
| | - Yanyan Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Medical College, Qingdao University, Qingdao 266021, P. R. China
| | - Han Gyung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chaekyun Kim
- Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Republic of Korea
| | - Yi-Seong Kwak
- Korean Ginseng Corporation, Central Research Institute, Daejeon 34337, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Lee GJ, Lee HM, Kim TS, Kim JK, Sohn KM, Jo EK. Mycobacterium fortuitum induces A20 expression that impairs macrophage inflammatory responses. Pathog Dis 2016; 74:ftw015. [PMID: 26940588 DOI: 10.1093/femspd/ftw015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2016] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium fortuitum is a rapidly growing mycobacterium that has been regarded as an etiological agent of a variety of human infections. However, little is known about the host inflammatory responses and the molecular mechanisms by which MF-induced inflammation is regulated in macrophages. In this study, we report that MF infection leads to the induction of an anti-inflammatory molecule, A20 (also known as TNFAIP3), which is essential for the regulation of MF-induced inflammatory responses in murine bone marrow-derived macrophages (BMDMs). MF triggered the expression of tumor necrosis factor-α and interleukin-6 in BMDMs through signaling of the Toll-like receptor 2 (TLR2)-myeloid differentiation primary response gene 88. Additionally, MF rapidly induced the expression of A20, which inhibited proinflammatory cytokine expression and nuclear factor (NF)-κB reporter gene activities in BMDMs. Notably, MF-induced activation of NF-κB signaling was required for A20 expression and proinflammatory responses in BMDMs. Furthermore, the rough morphotype of the MF clinical strain induced a higher level of proinflammatory signaling activation, but less A20 induction in BMDMs, compared to the smooth morphotype. Taken together, these results suggest that MF-induced activation of host proinflammatory responses is negatively regulated through TLR2-dependent A20 expression.
Collapse
Affiliation(s)
- Gippeum Joy Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Hye-Mi Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Tae Sung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Kyung Mok Sohn
- Division of Infectious Diseases, Chungnam National University Hospital, Daejeon 35015, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| |
Collapse
|
9
|
The Role of Protein Arginine Methyltransferases in Inflammatory Responses. Mediators Inflamm 2016; 2016:4028353. [PMID: 27041824 PMCID: PMC4793140 DOI: 10.1155/2016/4028353] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/14/2016] [Indexed: 12/29/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV). Although most PRMTs do not require posttranslational modification (PTM) to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6) in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.
Collapse
|
10
|
Yu T, Yang Y, Kwak YS, Song GG, Kim MY, Rhee MH, Cho JY. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J Ginseng Res 2016; 41:127-133. [PMID: 28413316 PMCID: PMC5386129 DOI: 10.1016/j.jgr.2016.02.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 12/11/2022] Open
Abstract
Background Ginsenoside Rc (G-Rc) is one of the major protopanaxadiol-type saponins isolated from Panax ginseng, a well-known medicinal herb with many beneficial properties including anticancer, anti-inflammatory, antiobesity, and antidiabetic effects. In this study, we investigated the effects of G-Rc on inflammatory responses in vitro and examined the mechanisms of these effects. Methods The in vitro inflammation system used lipopolysaccharide-treated macrophages, tumor necrosis factor-α/interferon-γ-treated synovial cells, and HEK293 cells transfected with various inducers of inflammation. Results G-Rc significantly inhibited the expression of macrophage-derived cytokines, such as tumor necrosis factor-α and interleukin-1β. G-Rc also markedly suppressed the activation of TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling in activated RAW264.7 macrophages, human synovial cells, and HEK293 cells. Conclusion G-Rc exerts its anti-inflammatory actions by suppressing TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling.
Collapse
Affiliation(s)
- Tao Yu
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea.,Institute of Translational Medicine, Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea.,Institute of Translational Medicine, Qingdao University, Qingdao, China
| | - Yi-Seong Kwak
- Korean Ginseng Corporation, Central Research Institute, Daejeon, Korea
| | - Gwan Gyu Song
- Division of Rheumatology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
11
|
Yeh MY, Shih YL, Chung HY, Chou J, Lu HF, Liu CH, Liu JY, Huang WW, Peng SF, Wu LY, Chung JG. Chitosan promotes immune responses, ameliorates glutamic oxaloacetic transaminase and glutamic pyruvic transaminase, but enhances lactate dehydrogenase levels in normal mice in vivo. Exp Ther Med 2016; 11:1300-1306. [PMID: 27073440 PMCID: PMC4812523 DOI: 10.3892/etm.2016.3057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 01/15/2016] [Indexed: 12/12/2022] Open
Abstract
Chitosan, a naturally derived polymer, has been shown to possess antimicrobial and anti-inflammatory properties; however, little is known about the effect of chitosan on the immune responses and glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) activities in normal mice. The aim of the present study was to investigate whether chitosan has an effect on the immune responses and GOT, GPT and LDH activities in mice in vivo. BALB/c mice were divided into four groups. The negative control group was treated with a normal diet; the positive control group was treated with a normal diet plus orally administered acetic acid and two treatment groups were treated with a normal diet plus orally administered chitosan in acetic acid at doses of 5 and 20 mg/kg, respectively, every other day for 24 days. Mice were weighed during the treatment, and following the treatment, blood was collected, and liver and spleen samples were isolated and weighted. The blood samples were used for measurement of white blood cell markers, and the spleen samples were used for analysis of phagocytosis, natural killer (NK) cell activity and cell proliferation using flow cytometry. The results indicated that chitosan did not markedly affect the body, liver and spleen weights at either dose. Chitosan increased the percentages of CD3 (T-cell marker), CD19 (B-cell marker), CD11b (monocytes) and Mac-3 (macrophages) when compared with the control group. However, chitosan did not affect the phagocytic activity of macrophages in peripheral blood mononuclear cells, although it decreased it in the peritoneal cavity. Treatment with 20 mg/kg chitosan led to a reduction in the cytotoxic activity of NK cells at an effector to target ratio of 25:1. Chitosan did not significantly promote B-cell proliferation in lipopolysaccharide-pretreated cells, but significantly decreased T-cell proliferation in concanavalin A-pretreated cells, and decreased the activity of GOT and GPT compared with that in the acetic acid-treated group,. In addition, it significantly increased LDH activity, to a level similar to that in normal mice, indicating that chitosan can protect against liver injury.
Collapse
Affiliation(s)
- Ming-Yang Yeh
- Office of Director, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Yung-Luen Shih
- Department of School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan, R.O.C.; Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taiwan, R.O.C.; School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Hsueh-Yu Chung
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan, R.O.C
| | - Jason Chou
- Department of Anatomical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Chia-Hui Liu
- The Center of General Education, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan, R.O.C
| | - Jia-You Liu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Lung-Yuan Wu
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.; Department of Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
12
|
Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections. PLoS One 2016; 11:e0146585. [PMID: 26751573 PMCID: PMC4713433 DOI: 10.1371/journal.pone.0146585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/18/2015] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.
Collapse
|
13
|
Hossen MJ, Hong YD, Baek KS, Yoo S, Hong YH, Kim JH, Lee JO, Kim D, Park J, Cho JY. In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng. J Ginseng Res 2016; 41:43-51. [PMID: 28123321 PMCID: PMC5223069 DOI: 10.1016/j.jgr.2015.12.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/24/2015] [Indexed: 12/24/2022] Open
Abstract
Background BIOGF1K, a compound K-rich fraction prepared from the root of Panax ginseng, is widely used for cosmetic purposes in Korea. We investigated the functional mechanisms of the anti-inflammatory and antioxidative activities of BIOGF1K by discovering target enzymes through various molecular studies. Methods We explored the inhibitory mechanisms of BIOGF1K using lipopolysaccharide-mediated inflammatory responses, reporter gene assays involving overexpression of toll-like receptor adaptor molecules, and immunoblotting analysis. We used the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to measure the antioxidative activity. We cotransfected adaptor molecules, including the myeloid differentiation primary response gene 88 (MyD88) and Toll/interleukin-receptor domain containing adaptor molecule-inducing interferon-β (TRIF), to measure the activation of nuclear factor (NF)-κB and interferon regulatory factor 3 (IRF3). Results BIOGF1K suppressed lipopolysaccharide-triggered NO release in macrophages as well as DPPH-induced electron-donating activity. It also blocked lipopolysaccharide-induced mRNA levels of interferon-β and inducible nitric oxide synthase. Moreover, BIOGF1K diminished the translocation and activation of IRF3 and NF-κB (p50 and p65). This extract inhibited the upregulation of NF-κB-linked luciferase activity provoked by phorbal-12-myristate-13 acetate as well as MyD88, TRIF, and inhibitor of κB (IκBα) kinase (IKKβ), and IRF3-mediated luciferase activity induced by TRIF and TANK-binding kinase 1 (TBK1). Finally, BIOGF1K downregulated the NF-κB pathway by blocking IKKβ and the IRF3 pathway by inhibiting TBK1, according to reporter gene assays, immunoblotting analysis, and an AKT/IKKβ/TBK1 overexpression strategy. Conclusion Overall, our data suggest that the suppression of IKKβ and TBK1, which mediate transcriptional regulation of NF-κB and IRF3, respectively, may contribute to the broad-spectrum inhibitory activity of BIOGF1K.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea; Department of Animal Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Yong Deog Hong
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Sulgi Yoo
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Yo Han Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Jeong-Oog Lee
- Bio-inspired Aerospace Information Laboratory, Department of Aerospace Information Engineering, Konkuk University, Seoul, Korea
| | - Donghyun Kim
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Korea
| | - Junseong Park
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
14
|
Hossen MJ, Kim MY, Cho JY. MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1111-1125. [DOI: 10.1142/s0192415x16500622] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Xanthium strumarium L. (Asteraceae), a traditional Chinese medicine, is prescribed to treat arthritis, bronchitis, and rhinitis. Although the plant has been used for many years, the mechanism by which it ameliorates various inflammatory diseases is not yet fully understood. To explore the anti-inflammatory mechanism of methanol extracts of X. strumarium (Xs-ME) and its therapeutic potential, we used lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cells and human monocyte-like U937 cells as well as a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. To find the target inflammatory pathway, we used holistic immunoblotting analysis, reporter gene assays, and mRNA analysis. Xs-ME significantly suppressed the up-regulation of both the activator protein (AP)-1-mediated luciferase activity and the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1[Formula: see text], IL-6, and tumor necrosis factor (TNF)-[Formula: see text]. Moreover, Xs-ME strongly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW264.7 and U937 cells. Additionally, these results highlighted the hepatoprotective and curative effects of Xs-ME in a mouse model of LPS/D-GalN-induced acute liver injury, as assessed by elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and histological damage. Therefore, our results strongly suggest that the ethnopharmacological roles of Xs-ME in hepatitis and other inflammatory diseases might result from its inhibitory activities on the inflammatory signaling of MAPK and AP-1.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Animal Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
4-Isopropyl-2,6-bis(1-phenylethyl)aniline 1, an Analogue of KTH-13 Isolated from Cordyceps bassiana, Inhibits the NF-κB-Mediated Inflammatory Response. Mediators Inflamm 2015; 2015:143025. [PMID: 26819495 PMCID: PMC4706927 DOI: 10.1155/2015/143025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/04/2015] [Indexed: 01/16/2023] Open
Abstract
The Cordyceps species has been a good source of compounds with anticancer and anti-inflammatory activities. Recently, we reported a novel compound (4-isopropyl-2,6-bis(1-phenylethyl)phenol, KTH-13) with anticancer activity isolated from Cordyceps bassiana and created several derivatives to increase its pharmacological activity. In this study, we tested one of the KTH-013 derivatives, 4-isopropyl-2,6-bis(1-phenylethyl)aniline 1 (KTH-13-AD1), with regard to anti-inflammatory activity under macrophage-mediated inflammatory conditions. KTH-13-AD1 clearly suppressed the production of nitric oxide (NO) and reactive oxygen species (ROS) in lipopolysaccharide (LPS) and sodium nitroprusside- (SNP-) treated macrophage-like cells (RAW264.7 cells). Similarly, this compound also reduced mRNA expression of inducible NO synthase (iNOS) and tumor necrosis factor-α (TNF-α), as analyzed by RT-PCR and real-time PCR. Interestingly, KTH-13-AD1 strongly diminished NF-κB-mediated luciferase activities and nuclear translocation of NF-κB family proteins. In accordance, KTH-13-AD1 suppressed the upstream signaling pathway of NF-κB activation, including IκBα, IKKα/β, AKT, p85/PI3K, and Src in a time- and dose-dependent manner. The autophosphorylation of Src and NF-κB observed during the overexpression of Src was also suppressed by KTH-13-AD1. These results strongly suggest that KTH-13-AD1 has strong anti-inflammatory features mediated by suppression of the Src/NF-κB regulatory loop.
Collapse
|
16
|
Kim YS, Kim JH, Woo M, Kim TS, Sohn KM, Lee YH, Jo EK, Yuk JM. Innate signaling mechanisms controlling Mycobacterium chelonae-mediated CCL2 and CCL5 expression in macrophages. J Microbiol 2015; 53:864-74. [PMID: 26626357 DOI: 10.1007/s12275-015-5348-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/27/2015] [Accepted: 11/19/2015] [Indexed: 12/16/2022]
Abstract
Mycobacterium chelonae (Mch) is an atypical rapidly growing mycobacterium (RGM) that belongs to the M. chelonae complex, which can cause a variety of human infections. During this type of mycobacterial infection, macrophage-derived chemokines play an important role in the mediation of intracellular communication and immune surveillance by which they orchestrate cellular immunity. However, the intracellular signaling pathways involved in the macrophage-induced chemokine production during Mch infections remain unknown. Thus, the present study aimed to determine the molecular mechanisms by which Mch activates the gene expressions of chemokine (C-C motif) ligand 2 (CCL2) and CCL5 in murine bone marrow-derived macrophages (BMDMs) and in vivo mouse model. Toll-like receptor 2 (TLR2)-deficient mice showed increased bacterial burden in spleen and lung and decreased protein expression of CCL2 and CCL5 in serum. Additionally, Mch infection triggered the mRNA and protein expression of CCL2 and CCL5 in BMDMs via TLR2 and myeloid differentiation primary response gene 88 (MyD88) signaling and that it rapidly activated nuclear factor (NF)-κB signaling, which is required for the Mch-induced expressions of CCL2 and CCL5 in BMDMs. Moreover, while the innate receptor Dectin-1 was only partly involved in the Mch-induced expression of the CCL2 and CCL5 chemokines in BMDMs, the generation of intracellular reactive oxygen species (ROS) was an important contributor to these processes. Taken together, the present data indicate that the TLR2, MyD88, and NF-κB pathways, Dectin-1 signaling, and intracellular ROS generation contribute to the Mch-mediated expression of chemokine genes in BMDMs.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji Hye Kim
- Infection Biology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Minjeong Woo
- Institute Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Tae-sung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.,Infection Biology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyung Mok Sohn
- Division of Infectious Diseases, Chungnam National University Hospital, Daejeon, 34134, Republic of Korea
| | - Young-Ha Lee
- Infection Biology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae-Min Yuk
- Infection Biology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea. .,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|