1
|
Patra S, Saha S, Singh R, Tomar N, Gulati P. Biofilm battleground: Unveiling the hidden challenges, current approaches and future perspectives in combating biofilm associated bacterial infections. Microb Pathog 2025; 198:107155. [PMID: 39586337 DOI: 10.1016/j.micpath.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
A biofilm is a complex aggregation of microorganisms, either of the same or different species, that adhere to a surface and are encased in an extracellular polymeric substances (EPS) matrix. Quorum sensing (QS) and biofilm formation are closely linked, as QS genes regulate the development, maturation, and breakdown of biofilms. Inhibiting QS can be utilized as an effective approach to combat the impacts of biofilm infection. The impact of biofilms includes chronic infections, industrial biofouling, infrastructure corrosion, and environmental contamination as well. Therefore, a deep understanding of biofilms is crucial for enhancing public health, advancing industrial processes, safeguarding the environment, and deepening our knowledge of microbial life as well. This review aims to offer a comprehensive examination of challenges posed by bacterial biofilms, contemporary approaches and strategies for effectively eliminating biofilms, including the inhibition of quorum sensing pathways, while also focusing on emerging technologies and techniques for biofilm treatment. In addition, future research is projected to target the challenges associated with the bacterial biofilms, striving to develop new approaches and improve existing strategies for their effective control and eradication.
Collapse
Affiliation(s)
- Sandeep Patra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sumana Saha
- Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Randhir Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nandini Tomar
- Department of Biotechnology, South Asian University, New Delhi, India
| | - Pallavi Gulati
- Ram Lal Anand College, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Maure A, Robino E, Van der Henst C. The intracellular life of Acinetobacter baumannii. Trends Microbiol 2023; 31:1238-1250. [PMID: 37487768 DOI: 10.1016/j.tim.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic bacterium responsible for nosocomial and community-acquired infections. This pathogen is globally disseminated and associated with high levels of antibiotic resistance, which makes it an important threat to human health. Recently, new evidence showed that several A. baumannii isolates can survive and proliferate within eukaryotic professional and/or nonprofessional phagocytic cells, with in vivo consequences. This review provides updated information and describes the tools that A. baumannii possesses to adhere, colonize, and replicate in host cells. Additionally, we emphasize the high genetic and phenotypic heterogeneity detected amongst A. baumannii isolates and its impact on the bacterial intracellular features. We also discuss the need for standardized methods to characterize this pathogen robustly and consequently consider some strains as facultative intracellular bacteria.
Collapse
Affiliation(s)
- Alexandra Maure
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Etienne Robino
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
3
|
Wu X, You C. The biomarkers discovery of hyperuricemia and gout: proteomics and metabolomics. PeerJ 2023; 11:e14554. [PMID: 36632144 PMCID: PMC9828291 DOI: 10.7717/peerj.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Hyperuricemia and gout are a group of disorders of purine metabolism. In recent years, the incidence of hyperuricemia and gout has been increasing, which is a severe threat to people's health. Several studies on hyperuricemia and gout in proteomics and metabolomics have been conducted recently. Some literature has identified biomarkers that distinguish asymptomatic hyperuricemia from acute gout or remission of gout. We summarize the physiological processes in which these biomarkers may be involved and their role in disease progression. Methodology We used professional databases including PubMed, Web of Science to conduct the literature review. This review addresses the current landscape of hyperuricemia and gout biomarkers with a focus on proteomics and metabolomics. Results Proteomic methods are used to identify differentially expressed proteins to find specific biomarkers. These findings may be suggestive for the diagnosis and treatment of hyperuricemia and gout to explore the disease pathogenesis. The identified biomarkers may be mediators of the link between hyperuricemia, gout and kidney disease, metabolic syndrome, diabetes and hypertriglyceridemia. Metabolomics reveals the main influential pathways through small molecule metabolites, such as amino acid metabolism, lipid metabolism, or other characteristic metabolic pathways. These studies have contributed to the discovery of Chinese medicine. Some traditional Chinese medicine compounds can improve the metabolic disorders of the disease. Conclusions We suggest some possible relationships of potential biomarkers with inflammatory episodes, complement activation, and metabolic pathways. These biomarkers are able to distinguish between different stages of disease development. However, there are relatively few proteomic as well as metabolomic studies on hyperuricemia and gout, and some experiments are only primary screening tests, which need further in-depth study.
Collapse
Affiliation(s)
- Xinghong Wu
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Hou S, Wu H, Chen S, Li X, Zhang Z, Cheng Y, Chen Y, He M, An Q, Man C, Du L, Chen Q, Wang F. Bovine skin fibroblasts mediated immune responses to defend against bovine Acinetobacter baumannii infection. Microb Pathog 2022; 173:105806. [PMID: 36179976 DOI: 10.1016/j.micpath.2022.105806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 10/14/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is an opportunistic pathogen which can cause pneumonia, sepsis and infections of skin and soft tissue. The host mostly relies on innate immune responses to defend against the infection of A. baumannii. Currently, it has been confirmed that fibroblasts involved in innate immune responses. Therefore, to explore how bovine skin fibroblasts mediated immune responses to defend against A. baumannii infection, we analyzed the differential transcripts data of bovine skin fibroblasts infected with bovine A. baumannii by RNA-sequencing (RNA-seq). We found that there were 3014 differentially expressed genes (DEGs) at 14h with bovine A. baumannii infection, including 1940 up-regulated genes and 1074 down-regulated genes. Gene Ontology (GO) enrichment showed that ubiquitin protein ligase binding, IL-6 receptor complex, ERK1 and ERK2 cascade terms were mainly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed that innate immune pathways were significantly enriched, such as TNF, IL-17, NLR, MAPK, NF-κB, endocytosis, apoptosis and HIF-1 signaling pathways. Furthermore, Gene Set Enrichment Analysis (GSEA) revealed that GO terms such as chemokine receptor binding and Th17 cell differentiation and KEGG pathways such as TLR and cytokine-cytokine receptor interaction pathways were up-regulated. In addition, CASP3 and JUN were the core functional genes of apoptosis, while IL-6, ERBB2, EGFR, CHUK and MAPK8 were the core functional genes of immunity by Protein-Protein Interaction (PPI) analysis. Our study provided an in-depth understanding of the molecular mechanisms of fibroblasts against A. baumannii infection. It also lays the foundation for the development of new therapeutic targets for the diseases caused by A. baumannii infection and formulates effective therapeutic strategies for the prevention and control of the diseases caused by A. baumannii.
Collapse
Affiliation(s)
- Simeng Hou
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Haotian Wu
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Xubo Li
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Zhenxing Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Yiwen Cheng
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Yuanyuan Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Meirong He
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Qi An
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
5
|
Dolma KG, Khati R, Paul AK, Rahmatullah M, de Lourdes Pereira M, Wilairatana P, Khandelwal B, Gupta C, Gautam D, Gupta M, Goyal RK, Wiart C, Nissapatorn V. Virulence Characteristics and Emerging Therapies for Biofilm-Forming Acinetobacter baumannii: A Review. BIOLOGY 2022; 11:biology11091343. [PMID: 36138822 PMCID: PMC9495682 DOI: 10.3390/biology11091343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Acinetobacter baumannii (A. baumannii) is one of the ESKAPE organisms and has the competency to build biofilms. These biofilms account for the most nosocomial infections all over the world. This review reflects on the various physicochemical and environmental factors such as adhesion, pili expression, growth surfaces, drug-resistant genes, and virulence factors that profoundly affect its resistant forte. Emerging drug-resistant issues and limitations to newer drugs are other factors affecting the hospital environment. Here, we discuss newer and alternative methods that can significantly enhance the susceptibility to Acinetobacter spp. Many new antibiotics are under trials, such as GSK-3342830, The Cefiderocol (S-649266), Fimsbactin, and similar. On the other hand, we can also see the impact of traditional medicine and the secondary metabolites of these natural products’ application in searching for new treatments. The field of nanoparticles has demonstrated effective antimicrobial actions and has exhibited encouraging results in the field of nanomedicine. The use of various phages such as vWUPSU and phage ISTD as an alternative treatment for its specificity and effectiveness is being investigated. Cathelicidins obtained synthetically or from natural sources can effectively produce antimicrobial activity in the micromolar range. Radioimmunotherapy and photodynamic therapy have boundless prospects if explored as a therapeutic antimicrobial strategy. Abstract Acinetobacter species is one of the most prevailing nosocomial pathogens with a potent ability to develop antimicrobial resistance. It commonly causes infections where there is a prolonged utilization of medical devices such as CSF shunts, catheters, endotracheal tubes, and similar. There are several strains of Acinetobacter (A) species (spp), among which the majority are pathogenic to humans, but A. baumannii are entirely resistant to several clinically available antibiotics. The crucial mechanism that renders them a multidrug-resistant strain is their potent ability to synthesize biofilms. Biofilms provide ample opportunity for the microorganisms to withstand the harsh environment and further cause chronic infections. Several studies have enumerated multiple physiological and virulence factors responsible for the production and maintenance of biofilms. To further enhance our understanding of this pathogen, in this review, we discuss its taxonomy, pathogenesis, current treatment options, global resistance rates, mechanisms of its resistance against various groups of antimicrobials, and future therapeutics.
Collapse
Affiliation(s)
- Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Rachana Khati
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (P.W.); (V.N.)
| | - Bidita Khandelwal
- Department of Medicine, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Chamma Gupta
- Department of Biotechnology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Deepan Gautam
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ramesh K. Goyal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence: (P.W.); (V.N.)
| |
Collapse
|
6
|
Bhusal A, Nam Y, Seo D, Rahman MH, Hwang EM, Kim S, Lee W, Suk K. Cathelicidin‐related antimicrobial peptide promotes neuroinflammation through astrocyte–microglia communication in experimental autoimmune encephalomyelitis. Glia 2022; 70:1902-1926. [DOI: 10.1002/glia.24227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Youngpyo Nam
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Donggun Seo
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- Division of Endocrinology, Department of Medicine Rutgers Robert Wood Johnson Medical School New Brunswick New Jersey USA
| | - Eun Mi Hwang
- Brain Science Institute, Korea Institute of Science and Technology Seoul Republic of Korea
| | - Seung‐Chan Kim
- Brain Science Institute, Korea Institute of Science and Technology Seoul Republic of Korea
| | - Won‐Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group Kyungpook National University Daegu Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine Kyungpook National University Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine Kyungpook National University Daegu Republic of Korea
- Brain Science and Engineering Institute Kyungpook National University Daegu Republic of Korea
| |
Collapse
|
7
|
Zhang Z, Li D, Ma X, Li X, Guo Z, Liu Y, Zheng S. Carboxylated nanodiamond-mediated NH2-PLGA nanoparticle-encapsulated fig polysaccharides for strongly enhanced immune responses in vitro and in vivo. Int J Biol Macromol 2020; 165:1331-1345. [DOI: 10.1016/j.ijbiomac.2020.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
|