1
|
Hu Y, Zhang R, Li J, Wang H, Wang M, Ren Q, Fang Y, Tian L. Association Between Gut and Nasal Microbiota and Allergic Rhinitis: A Systematic Review. J Asthma Allergy 2024; 17:633-651. [PMID: 39006241 PMCID: PMC11246088 DOI: 10.2147/jaa.s472632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Allergic rhinitis is a chronic non-infectious inflammation of the nasal mucosa mediated by specific IgE. Recently, the human microbiome has drawn broad interest as a potential new target for treating this condition. This paper succinctly summarizes the main findings of 17 eligible studies published by February 2024, involving 1044 allergic rhinitis patients and 954 healthy controls from 5 countries. These studies examine differences in the human microbiome across important mucosal interfaces, including the nasal and intestinal areas, between patients and controls. Overall, findings suggest variations in the gut microbiota between allergic rhinitis patients and healthy individuals, although the specific bacterial taxa that significantly changed were not always consistent across studies. Due to the limited scope of existing research and patient coverage, the relationship between the nasal microbiome and allergic rhinitis remains inconclusive. The article discusses the potential immune-regulating role of the gut microbiome in allergic rhinitis. Further well-designed clinical trials with large-scale recruitment of allergic rhinitis patients are encouraged.
Collapse
Affiliation(s)
- Yucheng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Rong Zhang
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Junjie Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Huan Wang
- Chengdu university of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Meiya Wang
- Chengdu university of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Qiuyi Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Yueqi Fang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Li Tian
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
2
|
Pamart G, Gosset P, Le Rouzic O, Pichavant M, Poulain-Godefroy O. Kynurenine Pathway in Respiratory Diseases. Int J Tryptophan Res 2024; 17:11786469241232871. [PMID: 38495475 PMCID: PMC10943758 DOI: 10.1177/11786469241232871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/28/2024] [Indexed: 03/19/2024] Open
Abstract
The kynurenine pathway is the primary route for tryptophan catabolism and has received increasing attention as its association with inflammation and the immune system has become more apparent. This review provides a broad overview of the kynurenine pathway in respiratory diseases, from the initial observations to the characterization of the different cell types involved in the synthesis of kynurenine metabolites and the underlying immunoregulatory mechanisms. With a focus on respiratory infections, the various attempts to characterize the kynurenine/tryptophan (K/T) ratio as an inflammatory marker are reviewed. Its implication in chronic lung inflammation and its exacerbation by respiratory pathogens is also discussed. The emergence of preclinical interventional studies targeting the kynurenine pathway opens the way for the future development of new therapies.
Collapse
Affiliation(s)
- Guillaume Pamart
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Philippe Gosset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Olivier Le Rouzic
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Muriel Pichavant
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Odile Poulain-Godefroy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
3
|
Huang Y, Chen L, Liu F, Xiong X, Ouyang Y, Deng Y. Tryptophan, an important link in regulating the complex network of skin immunology response in atopic dermatitis. Front Immunol 2024; 14:1300378. [PMID: 38318507 PMCID: PMC10839033 DOI: 10.3389/fimmu.2023.1300378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024] Open
Abstract
Atopic dermatitis (AD) is a common chronic relapsing inflammatory skin disease, of which the pathogenesis is a complex interplay between genetics and environment. Although the exact mechanisms of the disease pathogenesis remain unclear, the immune dysregulation primarily involving the Th2 inflammatory pathway and accompanied with an imbalance of multiple immune cells is considered as one of the critical etiologies of AD. Tryptophan metabolism has long been firmly established as a key regulator of immune cells and then affect the occurrence and development of many immune and inflammatory diseases. But the relationship between tryptophan metabolism and the pathogenesis of AD has not been profoundly discussed throughout the literatures. Therefore, this review is conducted to discuss the relationship between tryptophan metabolism and the complex network of skin inflammatory response in AD, which is important to elucidate its complex pathophysiological mechanisms, and then lead to the development of new therapeutic strategies and drugs for the treatment of this frequently relapsing disease.
Collapse
Affiliation(s)
- Yaxin Huang
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lingna Chen
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Fuming Liu
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yongliang Ouyang
- Department of Dermatology & Sexually Transmitted Disease (STD), Chengdu First People’s Hospital, Chengdu, Sichuan, China
- Health Management Center, Luzhou People’s Hospital, Luzhou, China
| | - Yongqiong Deng
- Department of Dermatology & Sexually Transmitted Disease (STD), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Dermatology & Sexually Transmitted Disease (STD), Chengdu First People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Cerato JA, da Silva EF, Porto BN. Breaking Bad: Inflammasome Activation by Respiratory Viruses. BIOLOGY 2023; 12:943. [PMID: 37508374 PMCID: PMC10376673 DOI: 10.3390/biology12070943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
The nucleotide-binding domain leucine-rich repeat-containing receptor (NLR) family is a group of intracellular sensors activated in response to harmful stimuli, such as invading pathogens. Some NLR family members form large multiprotein complexes known as inflammasomes, acting as a platform for activating the caspase-1-induced canonical inflammatory pathway. The canonical inflammasome pathway triggers the secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 by the rapid rupture of the plasma cell membrane, subsequently causing an inflammatory cell death program known as pyroptosis, thereby halting viral replication and removing infected cells. Recent studies have highlighted the importance of inflammasome activation in the response against respiratory viral infections, such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While inflammasome activity can contribute to the resolution of respiratory virus infections, dysregulated inflammasome activity can also exacerbate immunopathology, leading to tissue damage and hyperinflammation. In this review, we summarize how different respiratory viruses trigger inflammasome pathways and what harmful effects the inflammasome exerts along with its antiviral immune response during viral infection in the lungs. By understanding the crosstalk between invading pathogens and inflammasome regulation, new therapeutic strategies can be exploited to improve the outcomes of respiratory viral infections.
Collapse
Affiliation(s)
- Julia A. Cerato
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
| | - Emanuelle F. da Silva
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
| | - Barbara N. Porto
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (J.A.C.); (E.F.d.S.)
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
5
|
Li H, Ma L, Li W, Zheng B, Wang J, Chen S, Wang Y, Ge F, Qin B, Zheng X, Deng Y, Zeng R. Proline metabolism reprogramming of trained macrophages induced by early respiratory infection combined with allergen sensitization contributes to development of allergic asthma in childhood of mice. Front Immunol 2022; 13:977235. [PMID: 36211408 PMCID: PMC9533174 DOI: 10.3389/fimmu.2022.977235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Infants with respiratory syncytial virus (RSV)-associated bronchiolitis are at increased risk of childhood asthma. Recent studies demonstrated that certain infections induce innate immune memory (also termed trained immunity), especially in macrophages, to respond more strongly to future stimuli with broad specificity, involving in human inflammatory diseases. Metabolic reprogramming increases the capacity of the innate immune cells to respond to a secondary stimulation, is a crucial step for the induction of trained immunity. We hypothesize that specific metabolic reprogramming of lung trained macrophages induced by neonatal respiratory infection is crucial for childhood allergic asthma. Objective To address the role of metabolic reprogramming in lung trained macrophages induced by respiratory virus infection in allergic asthma. Methods Neonatal mice were infected and sensitized by the natural rodent pathogen Pneumonia virus of mice (PVM), a mouse equivalent strain of human RSV, combined with ovalbumin (OVA). Lung CD11b+ macrophages in the memory phase were re-stimulated to investigate trained immunity and metabonomics. Adoptive transfer, metabolic inhibitor and restore experiments were used to explore the role of specific metabolic reprogramming in childhood allergic asthma. Results PVM infection combined with OVA sensitization in neonatal mice resulted in non-Th2 (Th1/Th17) type allergic asthma following OVA challenge in childhood of mice. Lung CD11b+ macrophages in the memory phage increased, and showed enhanced inflammatory responses following re-stimulation, suggesting trained macrophages. Adoptive transfer of the trained macrophages mediated the allergic asthma in childhood. The trained macrophages showed metabolic reprogramming after re-stimulation. Notably, proline biosynthesis remarkably increased. Inhibition of proline biosynthesis suppressed the development of the trained macrophages as well as the Th1/Th17 type allergic asthma, while supplement of proline recovered the trained macrophages as well as the allergic asthma. Conclusion Proline metabolism reprogramming of trained macrophages induced by early respiratory infection combined with allergen sensitization contributes to development of allergic asthma in childhood. Proline metabolism could be a well target for prevention of allergic asthma in childhood.
Collapse
Affiliation(s)
- Hanglin Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Linyan Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Wenjian Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Boyang Zheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junhai Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Shunyan Chen
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Yang Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Fei Ge
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Beibei Qin
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Clinical Lab, Hebei Provincial People’s Hospital, Shijiazhuang, China
| | - Xiaoqing Zheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yuqing Deng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Ruihong Zeng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ruihong Zeng,
| |
Collapse
|