1
|
Rico-Méndez MA, Trujillo-Rojas MA, Ayala-Madrigal MDLL, Hernández-Sandoval JA, González-Mercado A, Gutiérrez-Angulo M, Romero-Quintana JG, Valenzuela-Pérez JA, Ramírez-Ramírez R, Flores-López BA, Moreno-Ortiz JM. MLH1 Methylation Status and Microsatellite Instability in Patients with Colorectal Cancer. Genes (Basel) 2025; 16:182. [PMID: 40004511 PMCID: PMC11854980 DOI: 10.3390/genes16020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The purpose of the current study was to compare the methylation of five regions of the CpG island of MLH1 with the presence of microsatellite instability (MSI) in colorectal cancer (CRC) patients. Methods: The study analyzed 138 CRC tumor samples. DNA extraction was performed, followed by bisulfite conversion. MLH1 gene methylation was assessed by methylation-specific PCR (MS-PCR), and the resulting fragments were analyzed using polyacrylamide gels. MSI was evaluated using multiplex PCR, and the fragments were run through capillary electrophoresis. R studio (v4.4.1) and SPSS (v29.0) software were used for the statistical analysis, and values of p < 0.05 were considered statistically significant. Results: The study showed 75.4% unmethylated, 21% partially methylated, and 3.6% fully methylated samples, with region A frequently methylated. MSI was observed in 7.2% of cases (MSI-H: 5.8%, MSI-L: 1.4%). BAT-26 was the most unstable marker. A significant difference between MLH1 methylation and MSI-H (p < 0.01) was identified, but there was no relationship with specific MLH1 regions. Conclusions: No differences were identified when analyzing specific methylation regions in relation to MSI. This study is the first to describe MSI frequency in Mexican patients regardless of age.
Collapse
Affiliation(s)
- Manuel Alejandro Rico-Méndez
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44340, Jalisco, Mexico; (M.A.R.-M.); (M.A.T.-R.); (M.d.l.L.A.-M.); (J.A.H.-S.); (A.G.-M.)
| | - Miguel Angel Trujillo-Rojas
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44340, Jalisco, Mexico; (M.A.R.-M.); (M.A.T.-R.); (M.d.l.L.A.-M.); (J.A.H.-S.); (A.G.-M.)
| | - María de la Luz Ayala-Madrigal
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44340, Jalisco, Mexico; (M.A.R.-M.); (M.A.T.-R.); (M.d.l.L.A.-M.); (J.A.H.-S.); (A.G.-M.)
| | - Jesús Arturo Hernández-Sandoval
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44340, Jalisco, Mexico; (M.A.R.-M.); (M.A.T.-R.); (M.d.l.L.A.-M.); (J.A.H.-S.); (A.G.-M.)
| | - Anahí González-Mercado
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44340, Jalisco, Mexico; (M.A.R.-M.); (M.A.T.-R.); (M.d.l.L.A.-M.); (J.A.H.-S.); (A.G.-M.)
| | - Melva Gutiérrez-Angulo
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos C.P. 47600, Jalisco, Mexico;
| | - José Geovanni Romero-Quintana
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán C.P. 80010, Sinaloa, Mexico;
| | | | - Ruth Ramírez-Ramírez
- Departamento de Biología Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan C.P. 45200, Jalisco, Mexico;
| | - Beatriz Armida Flores-López
- Departamento de Ciclo de Vida, Facultad de Medicina, Universidad Autónoma de Guadalajara, Zapopan C.P. 45129, Jalisco, Mexico
| | - José Miguel Moreno-Ortiz
- Doctorado en Genética Humana e Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara C.P. 44340, Jalisco, Mexico; (M.A.R.-M.); (M.A.T.-R.); (M.d.l.L.A.-M.); (J.A.H.-S.); (A.G.-M.)
| |
Collapse
|
2
|
Tran TH, Nguyen VH, Vo DTN. How to "pick up" colorectal serrated lesions and polyps in daily histopathology practice: From terminologies to diagnostic pitfalls. World J Clin Oncol 2024; 15:1157-1167. [PMID: 39351466 PMCID: PMC11438847 DOI: 10.5306/wjco.v15.i9.1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/27/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Over the last decade, our knowledge of colorectal serrated polyps and lesions has significantly improved due to numerous studies on this group of precursor lesions. Serrated lesions were misleading as benign before 2010, but they are currently reclassified as precancerous lesions that contribute to 30% of colorectal cancer through the serrated neoplasia pathway. The World Health Organization updated the classification for serrated lesions and polyps of the colon and rectum in 2019, which is more concise and applicable in daily practice. The responsible authors prescribe that "colorectal serrated lesions and polyps are characterized by a serrated (sawtooth or stellate) architecture of the epithelium." From a clinical standpoint, sessile serrated lesion (SSL) and SSL with dysplasia (SSLD) are the two most significant entities. Despite these advancements, the precise diagnosis of SSL and SSLD based mainly on histopathology remains challenging due to various difficulties. This review describes the nomenclature and the terminology of colorectal serrated polyps and lesions and highlights the diagnostic criteria and obstacles encountered in the histopathological diagnosis of SSL and SSLD.
Collapse
Affiliation(s)
- Thai H Tran
- Department of Pathology, Da Nang Hospital, Da Nang 50000, Viet Nam
| | - Vinh H Nguyen
- Department of Pathology, University Medical Center Ho Chi Minh City, Ho Chi Minh 70000, Viet Nam
| | - Diem TN Vo
- Department of Pathology, University Medical Center Ho Chi Minh City, Ho Chi Minh 70000, Viet Nam
- Department of Histology-Embryology and Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh 70000, Viet Nam
| |
Collapse
|
3
|
Kim JH, Hong J, Lee JA, Jung M, Choi E, Cho NY, Kang GH, Kim S. Immune microenvironmental heterogeneity according to tumor DNA methylation phenotypes in microsatellite instability-high colorectal cancers. Cancer Immunol Immunother 2024; 73:215. [PMID: 39235590 PMCID: PMC11377388 DOI: 10.1007/s00262-024-03805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
The detailed association between tumor DNA methylation, including CpG island methylation, and tumor immunity is poorly understood. CpG island methylator phenotype (CIMP) is observed typically in sporadic colorectal cancers (CRCs) with microsatellite instability-high (MSI-H). Here, we investigated the differential features of the tumor immune microenvironment according to CIMP status in MSI-H CRCs. CIMP-high (CIMP-H) or CIMP-low/negative (CIMP-L/0) status was determined using MethyLight assay in 133 MSI-H CRCs. All MSI-H CRCs were subjected to digital pathology-based quantification of CD3 + /CD8 + /CD4 + /FoxP3 + /CD68 + /CD204 + /CD177 + tumor-infiltrating immune cells using whole-slide immunohistochemistry. Programmed death-ligand 1 (PD-L1) immunohistochemistry was evaluated using the tumor proportion score (TPS) and combined positive score (CPS). Representative cases were analyzed using whole-exome and RNA-sequencing. In 133 MSI-H CRCs, significantly higher densities of CD8 + tumor-infiltrating lymphocytes (TILs) were observed in CIMP-H tumors compared with CIMP-L/0 tumors. PD-L1 TPS and CPS in CIMP-H tumors were higher than in CIMP-L/0 tumors. Next-generation sequencing revealed that, compared with CIMP-L/0 tumors, CIMP-H tumors had higher fractions of CD8 + T cells/cytotoxic lymphocytes, higher cytolytic activity scores, and activated immune-mediated cell killing pathways. In contrast to CIMP-L/0 tumors, most CIMP-H tumors were identified as consensus molecular subtype 1, an immunogenic transcriptomic subtype of CRC. However, there were no differences in tumor mutational burden (TMB) between CIMP-H and CIMP-L/0 tumors in MSI-H CRCs. In conclusion, CIMP-H is associated with abundant cytotoxic CD8 + TILs and PD-L1 overexpression independent of TMB in MSI-H CRCs, suggesting that CIMP-H tumors represent a typical immune-hot subtype and are optimal candidates for immunotherapy in MSI-H tumors.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Jiyun Hong
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Minsun Jung
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunwoo Choi
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam-Yun Cho
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Serrated Colorectal Lesions: An Up-to-Date Review from Histological Pattern to Molecular Pathogenesis. Int J Mol Sci 2022; 23:ijms23084461. [PMID: 35457279 PMCID: PMC9032676 DOI: 10.3390/ijms23084461] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
Until 2010, colorectal serrated lesions were generally considered as harmless lesions and reported as hyperplastic polyps (HPs) by pathologists and gastroenterologists. However, recent evidence showed that they may bear the potential to develop into colorectal carcinoma (CRC). Therefore, the World Health Organization (WHO) classification has identified four categories of serrated lesions: hyperplastic polyps (HPs), sessile serrated lesions (SSLs), traditional serrated adenoma (TSAs) and unclassified serrated adenomas. SSLs with dysplasia and TSAs are the most common precursors of CRC. CRCs arising from serrated lesions originate via two different molecular pathways, namely sporadic microsatellite instability (MSI) and the CpG island methylator phenotype (CIMP), the latter being considered as the major mechanism that drives the serrated pathway towards CRC. Unlike CRCs arising through the adenoma-carcinoma pathway, APC-inactivating mutations are rarely shown in the serrated neoplasia pathway.
Collapse
|
5
|
Kim JH, Hong JH, Choi YL, Lee JA, Seo MK, Lee MS, An SB, Sung MJ, Cho NY, Kim SS, Shin YK, Kim S, Kang GH. NTRK oncogenic fusions are exclusively associated with the serrated neoplasia pathway in the colorectum and begin to occur in sessile serrated lesions. J Pathol 2021; 255:399-411. [PMID: 34402529 DOI: 10.1002/path.5779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 01/16/2023]
Abstract
Neurotrophic tropomyosin receptor kinase (NTRK) gene fusions are emerging tissue-agnostic drug targets in malignancies including colorectal carcinomas (CRCs), but their detailed landscape in the context of various colorectal carcinogenesis pathways remains to be investigated. In this study, pan-tropomyosin receptor kinase (TRK) protein expression was assessed by immunohistochemistry (IHC) in retrospectively collected colorectal epithelial tumor tissues, including 441 CRCs [133 microsatellite instability-high (MSI-high) and 308 microsatellite stable (MSS)] and 595 premalignant colorectal lesions (330 serrated lesions and 265 conventional adenomas). TRK-positive cases were then subjected to next-generation sequencing and/or fluorescence in situ hybridization to confirm NTRK rearrangements. TRK IHC positivity was not observed in any of the MSS CRCs, conventional adenomas, traditional serrated adenomas, or hyperplastic polyps, whereas TRK positivity was observed in 11 of 58 (19%) MLH1-methylated MSI-high CRCs, 4 of 23 (17%) sessile serrated lesions with dysplasia (SSLDs), and 5 of 132 (4%) sessile serrated lesions (SSLs). The 11 TRK-positive MSI-high CRCs commonly harbored CpG island methylator phenotype-high (CIMP-high), MLH1 methylation, BRAF/KRAS wild-type, and NTRK1 or NTRK3 fusion (TPM3-NTRK1, TPR-NTRK1, LMNA-NTRK1, SFPQ-NTRK1, ETV6-NTRK3, or EML4-NTRK3). Both NTRK1 or NTRK3 rearrangement and BRAF/KRAS wild-type were detected in all nine TRK-positive SSL(D)s, seven of which demonstrated MSS and/or CIMP-low. TRK expression was selectively observed in distorted serrated crypts within SSLs and was occasionally localized at the base of serrated crypts. NTRK fusions were detected only in SSLs of patients aged ≥50 years, whereas BRAF mutation was found in younger age-onset SSLs. In conclusion, NTRK-rearranged colorectal tumors develop exclusively through the serrated neoplasia pathway and can be initiated from non-dysplastic SSLs without BRAF/KRAS mutations prior to full occurrence of MSI-high/CIMP-high. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hoon Hong
- Central Laboratory, LOGONE Bio-Convergence Research Foundation, Seoul, Republic of Korea
| | - Yoon-La Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Pathology and Translational Genomics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mi-Kyoung Seo
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi-Sook Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Bin An
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Min Jung Sung
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Su Kim
- Central Laboratory, LOGONE Bio-Convergence Research Foundation, Seoul, Republic of Korea
| | - Young Kee Shin
- Central Laboratory, LOGONE Bio-Convergence Research Foundation, Seoul, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Kim JH, Kang GH. Evolving pathologic concepts of serrated lesions of the colorectum. J Pathol Transl Med 2020; 54:276-289. [PMID: 32580537 PMCID: PMC7385269 DOI: 10.4132/jptm.2020.04.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we provide an up-to-date review of the histopathology and molecular pathology of serrated colorectal lesions. First, we introduce the updated contents of the 2019 World Health Organization classification for serrated lesions. The sessile serrated lesion (SSL) is a new diagnostic terminology that replaces sessile serrated adenoma and sessile serrated polyp. The diagnostic criteria for SSL were revised to require only one unequivocal distorted serrated crypt, which is sufficient for diagnosis. Unclassified serrated adenomas have been included as a new category of serrated lesions. Second, we review ongoing issues concerning the morphology of serrated lesions. Minor morphologic variants with distinct molecular features were recently defined, including serrated tubulovillous adenoma, mucin-rich variant of traditional serrated adenoma (TSA), and superficially serrated adenoma. In addition to intestinal dysplasia and serrated dysplasia, minimal deviation dysplasia and not otherwise specified dysplasia were newly suggested as dysplasia subtypes of SSLs. Third, we summarize the molecular features of serrated lesions. The critical determinant of CpG island methylation development in SSLs is patient age. Interestingly, there may be ethnic differences in BRAF/KRAS mutation frequencies in SSLs. The molecular pathogenesis of TSAs is divided into KRAS and BRAF mutation pathways. SSLs with MLH1 methylation can progress into favorable prognostic microsatellite instability-positive (MSI+)/CpG island methylator phenotype-positive (CIMP+) carcinomas, whereas MLH1-unmethylated SSLs and BRAF-mutated TSAs can be precursors of poor-prognostic MSI-/CIMP+ carcinomas. Finally, based on our recent data, we propose an algorithm for stratifying risk subgroups of non-dysplastic SSLs.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|