1
|
Zhang W, Miao H, Liu J, Wu H, Wang Y, Gu P, Lei N, Yang K, Zheng Z, Li Q. Response of submerged macrophytes and biofilms to coexisting azithromycin and tetracycline: Antibiotic resistance genes removal, toxicity assessment and microbial properties. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106410. [PMID: 36724685 DOI: 10.1016/j.aquatox.2023.106410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics, such as azithromycin (AZ), tetracycline (TC), and their related antibiotic resistance genes (ARGs), create serious ecological risks to aquatic organisms. This study examined the response mechanisms of submerged macrophytes and periphytic biofilms to a mixture of AZ and TC pollution and determined the antibiotic removal efficiencies and fate of ARGs. The results showed that the plant-biofilm system had a significant capacity for removing both single and combined antibiotics with removal efficiencies of 93.06% ∼99.80% for AZ and 73.35% ∼97.74% for TC. Higher ARG (tetA, tetC, tetW, ermF, ermX, and ermB) abundances were observed in the biofilm, and subsequent exposure to the antibiotic mixture increased the abundances of these genes. Both single and combined antibiotics triggered antioxidant stress, but antagonistic effects were induced only with mixed AZ and TC exposure. Furthermore, the antibiotics changed the structural characteristics of extracellular polysaccharides and induced alterations in the structure of the biofilm microbial community. Increased N-acylated-l-homoserine lactone confirmed alternations in microbial quorum-sensing. The results extend the understanding of the fate of antibiotics and ARGs when aquatic plants and biofilms are exposed to antibiotic mixtures, as well as the organism's response mechanisms.
Collapse
Affiliation(s)
- Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jing Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Yuting Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Ningfei Lei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Kunlun Yang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Geohazard Prevention and Geoenviroment Protection, Chengdu University of Technology, Chengdu 610059, PR China.
| |
Collapse
|
2
|
Karungamye P, Rugaika A, Mtei K, Machunda R. A Review of Methods for Removal of Ceftriaxone from Wastewater. J Xenobiot 2022; 12:223-235. [PMID: 35997364 PMCID: PMC9397013 DOI: 10.3390/jox12030017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
The presence of pharmaceuticals in surface water and wastewater poses a threat to public health and has significant effects on the ecosystem. Since most wastewater treatment plants are ineffective at removing molecules efficiently, some pharmaceuticals enter aquatic ecosystems, thus creating issues such as antibiotic resistance and toxicity. This review summarizes the methods used for the removal of ceftriaxone antibiotics from aquatic environments. Ceftriaxone is one of the most commonly prescribed antibiotics in many countries, including Tanzania. Ceftriaxone has been reported to be less or not degraded in traditional wastewater treatment of domestic sewage. This has piqued the interest of researchers in the monitoring and removal of ceftriaxone from wastewater. Its removal from aqueous systems has been studied using a variety of methods which include physical, biological, and chemical processes. As a result, information about ceftriaxone has been gathered from many sources with the searched themes being ceftriaxone in wastewater, ceftriaxone analysis, and ceftriaxone removal or degradation. The methods studied have been highlighted and the opportunities for future research have been described.
Collapse
Affiliation(s)
- Petro Karungamye
- Department of Chemistry, The University of Dodoma (UDOM), Dodoma P.O. Box 338, Tanzania
- School of Materials Energy Water and Environmental Sciences, The Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (A.R.); (K.M.); (R.M.)
| | - Anita Rugaika
- School of Materials Energy Water and Environmental Sciences, The Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (A.R.); (K.M.); (R.M.)
| | - Kelvin Mtei
- School of Materials Energy Water and Environmental Sciences, The Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (A.R.); (K.M.); (R.M.)
| | - Revocatus Machunda
- School of Materials Energy Water and Environmental Sciences, The Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; (A.R.); (K.M.); (R.M.)
| |
Collapse
|
3
|
Ding R, Chen Y, Wang Q, Wu Z, Zhang X, Li B, Lin L. Recent advances in quantum dots-based biosensors for antibiotic detection. J Pharm Anal 2021; 12:355-364. [PMID: 35811614 PMCID: PMC9257440 DOI: 10.1016/j.jpha.2021.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Rui Ding
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Chen
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - Qiusu Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Zhengzhang Wu
- Jiangsu Conat Biological Products Co., Ltd., Taixing, Jiangsu, 225400, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
- Corresponding author.
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- Corresponding author. .
| |
Collapse
|
4
|
Chiu CF, Chiu SJ, Bai LY, Feng CH, Hu JL, Lin WY, Huang HY, Weng JR. A macrolide from Streptomyces sp. modulates apoptosis and autophagy through Mcl-1 downregulation in human breast cancer cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1316-1325. [PMID: 33713530 DOI: 10.1002/tox.23128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Secondary metabolites in marine organisms exhibit various pharmacological activities against diseases, such as cancer. In this study, the anti-proliferative effect of JBIR-100, a macrolide isolated from Streptomyces sp., was investigated in breast cancer cells. Cell growth was inhibited in response to JBIR-100 treatment concentration- and time-dependently in both MCF-7 and MDA-MB-231 breast cancer cells. JBIR-100 caused apoptosis, as verified by caspase activation and the cleavage of PARP. Western blotting revealed that JBIR-100 modulated the expression of Akt/NF-κB signaling components and Bcl-2 family members. Overexpression of Mcl-1 partially rescued MCF-7 cells from JBIR-100-induced cytotoxicity. In addition, transmission electron microscopy analyses, confocal analysis, and western blot assay indicated that JBIR-100 inhibited autophagy in MCF-7 cells. Exposure to the autophagy inhibitor did not synergize JBIR-100-induced apoptosis. In summary, our results suggested that JBIR-100 may be potentially used for breast cancer therapy.
Collapse
Affiliation(s)
- Chang-Fang Chiu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Cancer Center, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Jiuan Chiu
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Li-Yuan Bai
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hsien Feng
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jing-Lan Hu
- Cancer Center, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Yu Lin
- Department of Pharmacy, Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan
| | - Hao-Yu Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jing-Ru Weng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Bengtsson-Palme J, Milakovic M, Švecová H, Ganjto M, Jonsson V, Grabic R, Udikovic-Kolic N. Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. WATER RESEARCH 2019; 162:437-445. [PMID: 31301473 DOI: 10.1016/j.watres.2019.06.073] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic resistance is an emerging global health crisis, driven largely by overuse and misuse of antibiotics. However, there are examples in which the production of these antimicrobial agents has polluted the environment with active antibiotic residues, selecting for antibiotic resistant bacteria and the genes they carry. In this work, we have used shotgun metagenomics to investigate the taxonomic structure and resistance gene composition of sludge communities in a treatment plant in Croatia receiving wastewater from production of the macrolide antibiotic azithromycin. We found that the total abundance of antibiotic resistance genes was three times higher in sludge from the treatment plant receiving wastewater from pharmaceutical production than in municipal sludge from a sewage treatment plant in Zagreb. Surprisingly, macrolide resistance genes did not have higher abundances in the industrial sludge, but genes associated with mobile genetic elements such as integrons had. We conclude that at high concentrations of antibiotics, selection may favor taxonomic shifts towards intrinsically resistant species or strains harboring chromosomal resistance mutations rather than acquisition of mobile resistance determinants. Our results underscore the need for regulatory action also within Europe to avoid release of antibiotics into the environment.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 North Orchard Street, Madison, WI, 53715, USA; Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46, Gothenburg, Sweden
| | - Milena Milakovic
- Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000, Zagreb, Croatia
| | - Helena Švecová
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| | - Marin Ganjto
- Zagreb Wastewater - Management and Operation Ltd., Culinecka cesta 287, 10000, Zagreb, Croatia
| | - Viktor Jonsson
- Chalmers Computational Systems Biology Infrastructure, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| | - Nikolina Udikovic-Kolic
- Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka cesta 54, 10000, Zagreb, Croatia.
| |
Collapse
|
6
|
Zharkova MS, Orlov DS, Golubeva OY, Chakchir OB, Eliseev IE, Grinchuk TM, Shamova OV. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance? Front Cell Infect Microbiol 2019; 9:128. [PMID: 31114762 PMCID: PMC6503114 DOI: 10.3389/fcimb.2019.00128] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/10/2019] [Indexed: 01/10/2023] Open
Abstract
Rapidly growing resistance of pathogenic bacteria to conventional antibiotics leads to inefficiency of traditional approaches of countering infections and determines the urgent need for a search of fundamentally new anti-infective drugs. Antimicrobial peptides (AMPs) of the innate immune system are promising candidates for a role of such novel antibiotics. However, some cytotoxicity of AMPs toward host cells limits their active implementation in medicine and forces attempts to design numerous structural analogs of the peptides with optimized properties. An alternative route for the successful AMPs introduction may be their usage in combination with conventional antibiotics. Synergistic antibacterial effects have been reported for a number of such combinations, however, the molecular mechanisms of the synergy remain poorly understood and little is known whether AMPs cytotoxicy for the host cells increases upon their application with antibiotics. Our study is directed to examination of a combined action of natural AMPs with different structure and mode of action (porcine protegrin 1, caprine bactenecin ChBac3.4, human alpha- and beta-defensins (HNP-1, HNP-4, hBD-2, hBD-3), human cathelicidin LL-37), and egg white lysozyme with varied antibiotic agents (gentamicin, ofloxacin, oxacillin, rifampicin, polymyxin B, silver nanoparticles) toward selected bacteria, including drug-sensitive and drug-resistant strains, as well as toward some mammalian cells (human erythrocytes, PBMC, neutrophils, murine peritoneal macrophages and Ehrlich ascites carcinoma cells). Using “checkerboard titrations” for fractional inhibitory concentration indexes evaluation, it was found that synergy in antibacterial action mainly occurs between highly membrane-active AMPs (e.g., protegrin 1, hBD-3) and antibiotics with intracellular targets (e.g., gentamicin, rifampcin), suggesting bioavailability increase as the main model of such interaction. In some combinations modulation of dynamics of AMP-bacterial membrane interaction in presence of the antibiotic was also shown. Cytotoxic effects of the same combinations toward normal eukaryotic cells were rarely synergistic. The obtained data approve that combined application of antimicrobial peptides with antibiotics or other antimicrobials is a promising strategy for further development of new approach for combating antibiotic-resistant bacteria by usage of AMP-based therapeutics. Revealing the conventional antibiotics that increase the activity of human endogenous AMPs against particular pathogens is also important for cure strategies elaboration.
Collapse
Affiliation(s)
- Maria S Zharkova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Dmitriy S Orlov
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Olga Yu Golubeva
- Laboratory of Nanostructures Research, Institute of Silicate Chemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Oleg B Chakchir
- Nanobiotechnology Laboratory, Saint Petersburg National Research Academic University of the Russian Academy of Science, Saint Petersburg, Russia
| | - Igor E Eliseev
- Nanobiotechnology Laboratory, Saint Petersburg National Research Academic University of the Russian Academy of Science, Saint Petersburg, Russia
| | - Tatyana M Grinchuk
- Laboratory of Intracellular Signaling, Institute of Cytology of the Russian Academy of Science, Saint Petersburg, Russia
| | - Olga V Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, FSBSI Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|