1
|
Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GÁ, Martin LB, Plowright RK. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J Anim Ecol 2020; 89:972-995. [PMID: 31856309 DOI: 10.1111/1365-2656.13166] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/06/2019] [Indexed: 01/26/2023]
Abstract
The prevalence and intensity of parasites in wild hosts varies across space and is a key determinant of infection risk in humans, domestic animals and threatened wildlife. Because the immune system serves as the primary barrier to infection, replication and transmission following exposure, we here consider the environmental drivers of immunity. Spatial variation in parasite pressure, abiotic and biotic conditions, and anthropogenic factors can all shape immunity across spatial scales. Identifying the most important spatial drivers of immunity could help pre-empt infectious disease risks, especially in the context of how large-scale factors such as urbanization affect defence by changing environmental conditions. We provide a synthesis of how to apply macroecological approaches to the study of ecoimmunology (i.e. macroimmunology). We first review spatial factors that could generate spatial variation in defence, highlighting the need for large-scale studies that can differentiate competing environmental predictors of immunity and detailing contexts where this approach might be favoured over small-scale experimental studies. We next conduct a systematic review of the literature to assess the frequency of spatial studies and to classify them according to taxa, immune measures, spatial replication and extent, and statistical methods. We review 210 ecoimmunology studies sampling multiple host populations. We show that whereas spatial approaches are relatively common, spatial replication is generally low and unlikely to provide sufficient environmental variation or power to differentiate competing spatial hypotheses. We also highlight statistical biases in macroimmunology, in that few studies characterize and account for spatial dependence statistically, potentially affecting inferences for the relationships between environmental conditions and immune defence. We use these findings to describe tools from geostatistics and spatial modelling that can improve inference about the associations between environmental and immunological variation. In particular, we emphasize exploratory tools that can guide spatial sampling and highlight the need for greater use of mixed-effects models that account for spatial variability while also allowing researchers to account for both individual- and habitat-level covariates. We finally discuss future research priorities for macroimmunology, including focusing on latitudinal gradients, range expansions and urbanization as being especially amenable to large-scale spatial approaches. Methodologically, we highlight critical opportunities posed by assessing spatial variation in host tolerance, using metagenomics to quantify spatial variation in parasite pressure, coupling large-scale field studies with small-scale field experiments and longitudinal approaches, and applying statistical tools from macroecology and meta-analysis to identify generalizable spatial patterns. Such work will facilitate scaling ecoimmunology from individual- to habitat-level insights about the drivers of immune defence and help predict where environmental change may most alter infectious disease risk.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Biology, Indiana University, Bloomington, IN, USA.,Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Tamika J Lunn
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Caylee A Falvo
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Lynn B Martin
- Department of Global and Planetary Health, University of South Florida, Tampa, FL, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
2
|
Blaise C, Gagné F, Burgeot T. Three simple biomarkers useful in conducting water quality assessments with bivalve mollusks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27662-27669. [PMID: 27230145 DOI: 10.1007/s11356-016-6908-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
While biomarkers are undeniably key tools in aquatic ecotoxicology to measure adverse effects linked to contamination events, their application is often inhibited by monetary constraints negating the possibility of having access to dedicated equipment, special wares, and/or expensive reagents. To offset this bottleneck, we propose three simple physiological biomarkers, quantifiable in bivalves, that are free of cost considerations and that can provide basic knowledge on animal health and water quality. Indeed, condition index (CI), growth index (GI), and SOS response (air-time survival) comprise measurements straightforward enough to perform by any laboratory or science body on the planet. Long-term monitoring or screening studies can be carried out with these biomarkers and they are able to provide robust information notably after exposure of bivalves to either singular or multiple agents of contamination. By highlighting examples of data generated in aquatic studies conducted in Eastern Canada under both laboratory and field situations with different species of marine and freshwater mollusks, we establish the suitability of these biomarkers for assessing environmental contamination. Their relationships with other biomarkers are also shown which further corroborate their value as reliable indicators of ecosystem health.
Collapse
Affiliation(s)
- Christian Blaise
- Aquatic Contaminant Division, Environment and Climate Change Canada, Montréal, Québec, Canada.
| | - François Gagné
- Aquatic Contaminant Division, Environment and Climate Change Canada, Montréal, Québec, Canada
| | - Thierry Burgeot
- Unité de Biogéochimie et écotoxicologie, Ifremer, Nantes, France
| |
Collapse
|
3
|
Franzellitti S, Buratti S, Du B, Haddad SP, Chambliss CK, Brooks BW, Fabbri E. A multibiomarker approach to explore interactive effects of propranolol and fluoxetine in marine mussels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 205:60-69. [PMID: 26017112 DOI: 10.1016/j.envpol.2015.05.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/30/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
A multi-biomarker approach, including several lysosomal parameters, activity and mRNA expression of antioxidant enzymes, and DNA damage, was employed to investigate the nominal effects of 0.3 ng/L fluoxetine (FX) and 0.3 ng/L propranolol (PROP) alone or in combination (0.3 ng/L FX + 0.3 ng/L PROP) on Mediterranean mussels after a 7 day treatment. FX co-exposure appears to facilitate PROP bioaccumulation because PROP only accumulated in digestive gland of FX + PROP treated mussels. Lysosomal parameters were significantly impaired by FX + PROP treatment, while no clear antioxidant responses at the catalytic and transcriptional levels were observed. Biomarker responses led to a "medium stress level" diagnosis in FX + PROP treated mussels, according to the Expert System, whereas 0.3 ng/L PROP or FX alone did not induce consistent stress conditions. These findings suggest vulnerability of coastal marine mussels to FX and PROP contamination at environmentally relevant levels.
Collapse
Affiliation(s)
- Silvia Franzellitti
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna, Italy; University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna, Italy.
| | - Sara Buratti
- University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna, Italy
| | - Bowen Du
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Samuel P Haddad
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - C Kevin Chambliss
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Elena Fabbri
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna, Italy; University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna, Italy
| |
Collapse
|
4
|
Gagné F, Auclair J, Turcotte P, Gagnon C. Sublethal effects of silver nanoparticles and dissolved silver in freshwater mussels. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:479-490. [PMID: 23721583 DOI: 10.1080/15287394.2013.779561] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The increasing application of silver nanoparticles (nAg) in various consumer products has raised concerns regarding toxicological impacts in the environment. It is unclear at present whether the toxicity of nAg is mainly the result of the release of ionic Ag(+) in mussels. The freshwater mussel Elliptio complanata was exposed to increasing concentrations of 20-nm nAg, 80-nm nAg, and dissolved Ag(+) for 48 h at 15°C. The following biomarkers were used to determine the mode of action of nAg-induced adverse effects: metallothioneins (MT) (ionic Ag(+) release), lipid peroxidation (LPO) (ionic Ag(+) and nanosurface interactions), heat-shock proteins (HSP) (size-related effects), protein-ubiquitin levels (size-related effects), and DNA strand breaks (ionic Ag(+) and size effects). Results revealed that the response pattern of 80 nm nAg was more closely related to ionic Ag(+) than 20 nm nAg, suggesting a more important release of dissolved Ag from 80 nm nAg. Data showed that all forms of Ag were able to increase the levels of MT and LPO, which suggests the presence of ionic Ag(+) leads to oxidative stress. However, nanoparticles were also able to induce changes in protein-ubiquitin and to a lesser extent actinomyosin-ATPase, MT, and DNA strand breaks in the digestive gland in a manner different from Ag(+), which permitted discrimination of the forms of Ag. Moreover, LPO was closely associated with DNA strand breaks in the digestive gland and was not entirely explained by induction of MT, suggesting another type of toxic interaction. It was concluded that the presence of nAg not only increases the toxic loadings of released Ag ions but also generates other and perhaps cumulative effects of nanoparticle-induced toxicity related to size and surface properties.
Collapse
Affiliation(s)
- F Gagné
- Emerging Methods Section, Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment Canada, Montréal, Quebec, Canada.
| | | | | | | |
Collapse
|