1
|
Sabbaghian M, Gheitasi H, Fadaee M, Javadi Henafard H, Tavakoli A, Shekarchi AA, Poortahmasebi V. Human cytomegalovirus microRNAs: strategies for immune evasion and viral latency. Arch Virol 2024; 169:157. [PMID: 38969819 DOI: 10.1007/s00705-024-06080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/17/2024] [Indexed: 07/07/2024]
Abstract
Viruses use various strategies and mechanisms to deal with cells and proteins of the immune system that form a barrier against infection. One of these mechanisms is the encoding and production of viral microRNAs (miRNAs), whose function is to regulate the gene expression of the host cell and the virus, thus creating a suitable environment for survival and spreading viral infection. miRNAs are short, single-stranded, non-coding RNA molecules that can regulate the expression of host and viral proteins, and due to their non-immunogenic nature, they are not eliminated by the cells of the immune system. More than half of the viral miRNAs are encoded and produced by Orthoherpesviridae family members. Human cytomegalovirus (HCMV) produces miRNAs that mediate various processes in infected cells to contribute to HCMV pathogenicity, including immune escape, viral latency, and cell apoptosis. Here, we discuss which cellular and viral proteins or cellular pathways and processes these mysterious molecules target to evade immunity and support viral latency in infected cells. We also discuss current evidence that their function of bypassing the host's innate and adaptive immune system is essential for the survival and multiplication of the virus and the spread of HCMV infection.
Collapse
Affiliation(s)
- Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Ahmad Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Duan Y, Sun L, Li Q. Herpes Simplex Virus 1 MicroRNAs: An Update. Intervirology 2023; 66:97-110. [PMID: 37285807 PMCID: PMC10389796 DOI: 10.1159/000531348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Herpes simplex virus 1 (HSV-1), an important human pathogen, is capable of latent infection in neurons and productive (lytic) infection in other tissue cells. Once infected with HSV-1, the immune system of the organism cannot eliminate the virus and carries it lifelong. HSV-1 possesses approximately 150 kb of double-stranded linear genomic DNA and can encode at least 70 proteins and 37 mature microRNAs (miRNAs) derived from 18 precursor miRNAs (pre-miRNAs). SUMMARY These HSV-1-encoded miRNAs are widely involved in multiple processes in the life cycle of the virus and the host cell, including viral latent and lytic infection, as well as host cell immune signaling, proliferation, and apoptosis. KEY MESSAGE In this review, we focused primarily on recent advances in HSV-1-encoded miRNA expression, function, and mechanism, which may provide new research ideas and feasible research methods systemically and comprehensively.
Collapse
Affiliation(s)
- Yongzhong Duan
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, China,
| | - Le Sun
- Basic Medical College, Kunming Medical University, Kunming, China
| | - Qihan Li
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
3
|
Capistrano KJ, Richner J, Schwartz J, Mukherjee SK, Shukla D, Naqvi AR. Host microRNAs exhibit differential propensity to interact with SARS-CoV-2 and variants of concern. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166612. [PMID: 36481486 PMCID: PMC9721271 DOI: 10.1016/j.bbadis.2022.166612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
A significant number of SARS-CoV-2-infected individuals naturally overcome viral infection, suggesting the existence of a potent endogenous antiviral mechanism. As an innate defense mechanism, microRNA (miRNA) pathways in mammals have evolved to restrict viruses, besides regulating endogenous mRNAs. In this study, we systematically examined the complete repertoire of human miRNAs for potential binding sites on SARS-CoV-2 Wuhan-Hu-1, Beta, Delta, and Omicron. Human miRNA and viral genome interaction were analyzed using RNAhybrid 2.2 with stringent parameters to identify highly bonafide miRNA targets. Using publicly available data, we filtered for miRNAs expressed in lung epithelial cells/tissue and oral keratinocytes, concentrating on the miRNAs that target SARS-CoV-2 S protein mRNAs. Our results show a significant loss of human miRNA and SARS-CoV-2 interactions in Omicron (130 miRNAs) compared to Wuhan-Hu-1 (271 miRNAs), Beta (279 miRNAs), and Delta (275 miRNAs). In particular, hsa-miR-3150b-3p and hsa-miR-4784 show binding affinity for S protein of Wuhan strain but not Beta, Delta, and Omicron. Loss of miRNA binding sites on N protein was also observed for Omicron. Through Ingenuity Pathway Analysis (IPA), we examined the experimentally validated and highly predicted functional role of these miRNAs. We found that hsa-miR-3150b-3p and hsa-miR-4784 have several experimentally validated or highly predicted target genes in the Toll-like receptor, IL-17, Th1, Th2, interferon, and coronavirus pathogenesis pathways. Focusing on the coronavirus pathogenesis pathway, we found that hsa-miR-3150b-3p and hsa-miR-4784 are highly predicted to target MAPK13. Exploring miRNAs to manipulate viral genome/gene expression can provide a promising strategy with successful outcomes by targeting specific VOCs.
Collapse
Affiliation(s)
- Kristelle J Capistrano
- Mucosal Immunology Lab, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Justin Richner
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Joel Schwartz
- Molecular Pathology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Sunil K Mukherjee
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Deepak Shukla
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago 60612, IL, USA; Department of Ophthalmology and Visual Sciences, Ocular Virology Laboratory, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
4
|
Carvalho-Silva AC, Da Silva Junior AR, Rigaud VOC, Martins WK, Coelho V, Pfrimer IAH, Kalil J, Fonseca SG, Cunha-Neto E, Ferreira LRP. A Major Downregulation of Circulating microRNAs in Zika Acutely Infected Patients: Potential Implications in Innate and Adaptive Immune Response Signaling Pathways. Front Genet 2022; 13:857728. [PMID: 35719399 PMCID: PMC9199004 DOI: 10.3389/fgene.2022.857728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Zika virus (ZIKV) is an arbovirus mainly transmitted by mosquitos of the genus Aedes. The first cases of ZIKV infection in South America occurred in Brazil in 2015. The infection in humans causes diverse symptoms from asymptomatic to a syndrome-like dengue infection with fever, arthralgia, and myalgia. Furthermore, ZIKV infection during pregnancy is associated with fetal microcephaly and neurological disorders. The identification of host molecular mechanisms responsible for the modulation of different signaling pathways in response to ZIKV is the first step to finding potential biomarkers and therapeutic targets and understanding disease outcomes. In the last decade, it has been shown that microRNAs (miRNAs) are important post-transcriptional regulators involved in virtually all cellular processes. miRNAs present in body fluids can not only serve as key biomarkers for diagnostics and prognosis of human disorders but also contribute to cellular signaling offering new insights into pathological mechanisms. Here, we describe for the first time ZIKV-induced changes in miRNA plasma levels in patients during the acute and recovery phases of infection. We observed that during ZIKV acute infection, among the dysregulated miRNAs (DMs), the majority is with decreased levels when compared to convalescent and control patients. We used systems biology tools to build and highlight biological interactions between miRNAs and their multiple direct and indirect target molecules. Among the 24 DMs identified in ZIKV + patients, miR-146, miR-125a-5p, miR-30-5p, and miR-142-3p were related to signaling pathways modulated during infection and immune response. The results presented here are an effort to open new vistas for the key roles of miRNAs during ZIKV infection.
Collapse
Affiliation(s)
- Ana Carolina Carvalho-Silva
- RNA Systems Biology Laboratory (RSBL), Departmento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Biologia Celular, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Almir Ribeiro Da Silva Junior
- Laboratory of Immunology, Heart Institute (InCor) School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Waleska Kerllen Martins
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Universidade Anhanguera, São Paulo, Brazil
| | - Verônica Coelho
- Laboratory of Immunology, Heart Institute (InCor) School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor) School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Simone Gonçalves Fonseca
- Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor) School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- National Institute of Science and Technology for Vaccines (INCTV), Belo Horizonte, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Ludmila Rodrigues Pinto Ferreira,
| |
Collapse
|
5
|
Jafarzadeh A, Naseri A, Shojaie L, Nemati M, Jafarzadeh S, Bannazadeh Baghi H, Hamblin MR, Akhlagh SA, Mirzaei H. MicroRNA-155 and antiviral immune responses. Int Immunopharmacol 2021; 101:108188. [PMID: 34626873 DOI: 10.1016/j.intimp.2021.108188] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
The microRNA, miR-155 regulates both adaptive and innate immune responses. In viral infections, miR-155 can affect both innate immunity (interferon response, natural killer cell activity, and macrophage polarization) and adaptive immunity (including generation of anti-viral antibodies, CD8+ cytotoxic T lymphocytes, Th17, Th2, Th1, Tfh and Treg cells). In many viral infections, the proper and timely regulation of miR-155 expression is critical for the induction of an effective anti-virus immune response and viral clearance without any harmful immunopathologic consequences. MiR-155 may also exert pro-viral effects, mainly through the inhibition of the anti-viral interferon response. Thus, dysregulated expression of miR-155 can result in virus persistence and disruption of the normal response to viral infections. This review provides a thorough discussion of the role of miR-155 in immune responses and immunopathologic reactions during viral infections, and highlights its potential as a therapeutic target.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Alma Naseri
- Department of Immunology, Islamic Azadi university of Zahedan, Zahedan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Al Bitar S, Ballouz T, Doughan S, Gali-Muhtasib H, Rizk N. Potential role of micro ribonucleic acids in screening for anal cancer in human papilloma virus and human immunodeficiency virus related malignancies. World J Gastrointest Pathophysiol 2021; 12:59-83. [PMID: 34354849 PMCID: PMC8316837 DOI: 10.4291/wjgp.v12.i4.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/24/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite advances in antiretroviral treatment (ART), human immunodeficiency virus (HIV) continues to be a major global public health issue owing to the increased mortality rates related to the prevalent oncogenic viruses among people living with HIV (PLWH). Human papillomavirus (HPV) is the most common sexually transmitted viral disease in both men and women worldwide. High-risk or oncogenic HPV types are associated with the development of HPV-related malignancies, including cervical, penile, and anal cancer, in addition to oral cancers. The incidence of anal squamous cell cancers is increasing among PLWH, necessitating the need for reliable screening methods in this population at risk. In fact, the currently used screening methods, including the Pap smear, are invasive and are neither sensitive nor specific. Investigators are interested in circulatory and tissue micro ribonucleic acids (miRNAs), as these small non-coding RNAs are ideal biomarkers for early detection and prognosis of cancer. Multiple miRNAs are deregulated during HIV and HPV infection and their deregulation contributes to the pathogenesis of disease. Here, we will review the molecular basis of HIV and HPV co-infections and focus on the pathogenesis and epidemiology of anal cancer in PLWH. The limitations of screening for anal cancer and the need for a reliable screening program that involves specific miRNAs with diagnostic and therapeutic values is also discussed.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Tala Ballouz
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology and Center for Drug Discovery, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nesrine Rizk
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
7
|
Horváth M, Nagy G, Zsindely N, Bodai L, Horváth P, Vágvölgyi C, Nosanchuk JD, Tóth R, Gácser A. Oral Epithelial Cells Distinguish between Candida Species with High or Low Pathogenic Potential through MicroRNA Regulation. mSystems 2021; 6:6/3/e00163-21. [PMID: 33975967 PMCID: PMC8125073 DOI: 10.1128/msystems.00163-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oral epithelial cells monitor microbiome composition and initiate immune response upon dysbiosis, as in the case of Candida imbalances. Candida species, such as C. albicans and C. parapsilosis, are the most prevalent yeasts in the oral cavity. Comparison of healthy oral epithelial cell responses revealed that while C. albicans infection robustly activated inflammation cascades, C. parapsilosis primarily activated various inflammation-independent pathways. In posttranscriptional regulatory processes, several miRNAs were altered by both species. For C. parapsilosis, the dose of yeast cells directly correlated with changes in transcriptomic responses with higher fungal burdens inducing significantly different and broader changes. MicroRNAs (miRNAs) associated with carbohydrate metabolism-, hypoxia-, and vascular development-related responses dominated with C. parapsilosis infection, whereas C. albicans altered miRNAs linked to inflammatory responses. Subsequent analyses of hypoxia-inducible factor 1α (HIF1-α) and hepatic stellate cell (HSC) activation pathways predicted target genes through which miRNA-dependent regulation of yeast-specific functions may occur, which also supported the observed species-specific responses. Our findings suggest that C. parapsilosis is recognized as a commensal at low doses by the oral epithelium; however, increased fungal burden activates different pathways, some of which overlap with the inflammatory processes robustly induced by C. albicans IMPORTANCE A relatively new topic within the field of immunology involves the role of miRNAs in innate as well as adaptive immune response regulation. In recent years, posttranscriptional regulation of host-pathogenic fungal interactions through miRNAs was also suggested. Our study reveals that the distinct nature of human oral epithelial cell responses toward C. parapsilosis and C. albicans is possibly due to species-specific fine-tuning of host miRNA regulatory processes. The findings of this study also shed new light on the nature of early host cell transcriptional responses to the presence of C. parapsilosis and highlight the species' potential inflammation-independent host activation processes. These findings contribute to our better understanding of how miRNA deregulation at the oral immunological barrier, in noncanonical immune cells, may discriminate between fungal species, particularly Candida species with high or low pathogenic potential.
Collapse
Affiliation(s)
- Márton Horváth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Joshua D Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Lee JS, Kim S, Kim S, Ahn K, Min DH. Fluorometric Viral miRNA Nanosensor for Diagnosis of Productive (Lytic) Human Cytomegalovirus Infection in Living Cells. ACS Sens 2021; 6:815-822. [PMID: 33529521 DOI: 10.1021/acssensors.0c01843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A human cytomegalovirus (HCMV) causes a persistent asymptomatic infection in healthy individuals and possesses unexpected dangers to newborn babies, immunocompromised people, and organ transplant recipients because of stealth transmission. Thus, an early and accurate diagnosis of HCMV infection is crucial for prevention of unexpected transmission and progression of the severe diseases. The standard method of HCMV diagnosis depends on serology, antigen test, and polymerase chain reaction-based nucleic acid detection, which have advantages for each target molecule. However, the serological test for an antibody is an indirect method assuming the past virus infection, and antigen and viral nucleic acid testing demand laborious, complex multistep procedures for direct virus detection. Herein, we present an alternative simple and facile fluorometric biosensor composed of a graphene oxide nanocolloid and fluorescent peptide nucleic acid (PNA) probe to detect the HCMV infection by simply monitoring the virally encoded microRNA as a new biomarker of lytic virus infection. We verify the sensing of HCMV-derived microRNA accumulated within 72 h after HCMV infection and examine the diagnosis of HCMV in living cells. We proceed with the time course and concentration-dependent investigation of hcmv-miRNA sensing in living cells as a direct method of HCMV detection at the molecular level on the basis of an intracellular hcmv-miRNA expression profile and graphene oxide nanocolloid-based simple diagnostic platform. The fluorometric biosensor enables the sequence-specific binding to the target HCMV miRNAs in HCMV-infected fibroblasts and shows the quantitative detection capability of HCMV infection to be as low as 4.15 × 105 immunofluorescence focus unit (IFU)/mL of the virus titer at 48 h post-infection with picomolar sensitivity for HCMV miRNA.
Collapse
Affiliation(s)
- Ji-Seon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongchan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungchul Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwangseog Ahn
- Center for RNA Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Shin S, Jung Y, Uhm H, Song M, Son S, Goo J, Jeong C, Song JJ, Kim VN, Hohng S. Quantification of purified endogenous miRNAs with high sensitivity and specificity. Nat Commun 2020; 11:6033. [PMID: 33247115 PMCID: PMC7699633 DOI: 10.1038/s41467-020-19865-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short (19-24 nt) non-coding RNAs that suppress the expression of protein coding genes at the post-transcriptional level. Differential expression profiles of miRNAs across a range of diseases have emerged as powerful biomarkers, making a reliable yet rapid profiling technique for miRNAs potentially essential in clinics. Here, we report an amplification-free multi-color single-molecule imaging technique that can profile purified endogenous miRNAs with high sensitivity, specificity, and reliability. Compared to previously reported techniques, our technique can discriminate single base mismatches and single-nucleotide 3'-tailing with low false positive rates regardless of their positions on miRNA. By preloading probes in Thermus thermophilus Argonaute (TtAgo), miRNAs detection speed is accelerated by more than 20 times. Finally, by utilizing the well-conserved linearity between single-molecule spot numbers and the target miRNA concentrations, the absolute average copy numbers of endogenous miRNA species in a single cell can be estimated. Thus our technique, Ago-FISH (Argonaute-based Fluorescence In Situ Hybridization), provides a reliable way to accurately profile various endogenous miRNAs on a single miRNA sensing chip.
Collapse
Affiliation(s)
- Soochul Shin
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Yoonseok Jung
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Heesoo Uhm
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Minseok Song
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Soomin Son
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jiyoung Goo
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, Republic of Korea
| | - Cherlhyun Jeong
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Smith M, Zuckerman M, Kandanearatchi A, Thompson R, Davenport M. Using next-generation sequencing of microRNAs to identify host and/or pathogen nucleic acid signatures in samples from children with biliary atresia - a pilot study. Access Microbiol 2020; 2:acmi000127. [PMID: 32974591 PMCID: PMC7497833 DOI: 10.1099/acmi.0.000127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Biliary atresia (BA) is a progressive disease affecting infants resulting in inflammatory obliteration and fibrosis of the extra- and intra-hepatic biliary tree. BA may be grouped into type 1 isolated; type 2 syndromic, where other congenital malformations may be present; type 3 cystic BA, where there is cyst formation within an otherwise obliterated biliary tree; and cytomegalovirus-associated BA. The cause of BA is unclear, with immune dysregulation, inflammation and infection, particularly with cytomegalovirus (CMV), all implicated. In this study a total of 50/67 samples were tested for CMV DNA using quantitative real-time PCR. Ten liver tissue and 8 bile samples from 10 patients representing the range of BA types were also analysed by next-generation sequencing. CMV DNA was found in 8/50 (16 %) patients and a total of 265 differentially expressed microRNAs were identified. No statistically significant differences between the various types of BA were found. However, differences were identified in the expression patterns of 110 microRNAs in bile and liver tissue samples (P<0.05). A small number of bacterial and viral sequences were found, although their relevance to BA remains to be determined. No direct evidence of viral causes of BA were found, although clear evidence of microRNAs associated with hepatocyte and cholangiocyte differentiation together with fibrosis and inflammation were identified. These include miR-30 and the miR-23 cluster (liver and bile duct development) and miR-29, miR-483, miR-181, miR-199 and miR-200 (inflammation and fibrosis).
Collapse
Affiliation(s)
- Melvyn Smith
- Viapath Analytics, South London Specialist Virology Centre, Denmark Hill, London
| | - Mark Zuckerman
- Viapath Analytics, South London Specialist Virology Centre, Denmark Hill, London
| | | | - Richard Thompson
- Institute of Liver Studies and Paediatric Liver Services, Denmark Hill, London
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS
| |
Collapse
|
11
|
Zhang L, Wu K, Bo T, Zhou L, Gao L, Zhou X, Chen W. Integrated microRNA and proteome analysis reveal a regulatory module in hepatic lipid metabolism disorders in mice with subclinical hypothyroidism. Exp Ther Med 2019; 19:897-906. [PMID: 32010250 PMCID: PMC6966133 DOI: 10.3892/etm.2019.8281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Subclinical hypothyroidism (SCH) is becoming a global health problem due to its increasing prevalence and potential adverse effects, including cardiovascular diseases and nonalcoholic fatty liver disease (NAFLD). However, the association between SCH and NAFLD remains controversial. MicroRNAs (miRNAs/miRs) have been reported to be implicated in lipid metabolism disorders; however, how miRNAs regulate hepatic lipid metabolism in SCH mice remains unknown. The present study investigated miRNA alterations and proteome profiles in an SCH mouse model, which was generated by methimazole administration in mice for 16 weeks. Next, the profiles of 17 miRNAs that are critical to hepatic lipid metabolism and the proteome were investigated using reverse transcription-quantitative polymerase chain reaction and iTRAQ labeling in the liver specimens of SCH (n=9) and control (n=7) mice. Putative target prediction of miRNAs was also conducted using TargetScan and miRanda. Compared with the control mice, SCH mice had 8 miRNAs and 36 proteins with significantly different expression in the liver tissues. Furthermore, a regulatory module containing 3 miRNAs (miR-34a-5p, miR-24-3p and miR-130a-3p) and 4 proteins (thioredoxin, selenium-binding protein 2, elongation factor 1β and prosaposin) was identified. Overall, integrated analysis of miRNAs and the proteome highlighted a regulatory module between miRNAs and proteins, which, to a certain extent, may contribute to a better understanding of hepatic lipid metabolism disorders in SCH mice.
Collapse
Affiliation(s)
- Liya Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China
| | - Kunpeng Wu
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lingyan Zhou
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Department of Endocrinology and Metabolism, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiaoming Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, P.R. China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
12
|
Caputo TM, Battista E, Netti PA, Causa F. Supramolecular Microgels with Molecular Beacons at the Interface for Ultrasensitive, Amplification-Free, and SNP-Selective miRNA Fluorescence Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17147-17156. [PMID: 31021070 DOI: 10.1021/acsami.8b22635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, a supramolecular structure with femtomolar biorecognition properties is proposed for use in analytical devices. It is obtained by an innovative interface between synthetic hydrogel polymers and molecular beacon (mb) probes. Supramolecularly structured microgels are synthetized with a core-shell architecture with specific dyes polymerized in a desired compartment. Mb probes are opportunely conjugated at the microgel interface so that their recognition mechanism is preserved and their spatial distribution is optimized to avoid crowding effects. The miR-21, a microRNA involved in various biological processes and usually used as a biomarker in early cancer diagnosis, has been selected as the target. The results demonstrate that by tuning the spatial distribution of molecular probes immobilized on the microgel and/or the amount of microgels, the assay shows scalable sensitivity reaching a limit of detection down to about 10 fM, without amplification steps and with detection time as short as 1 h. The assay results specific toward single mutated targets, and it is stable in the presence of high-interfering oligonucleotides concentrations. The miRNA target is also detected in human serum with performances similar to those observed in PBS buffer because of microgel antifouling properties without the need of any surface treatment. All tests were performed in a low sample volume (20 μL). As a result, mb-microgel represents an innovative biosensor to precisely quantify microRNAs in a direct (mix&read), scalable, and selective way. Such an approach paves the way for creating innovative biosensing interfaces with other probes, such as hairpins, aptamers, and PNA.
Collapse
Affiliation(s)
- Tania M Caputo
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
| | - Edmondo Battista
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
- InterdisciplinaryResearch Centre on Biomaterials (CRIB) , Università degli Studi di Napoli "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
- InterdisciplinaryResearch Centre on Biomaterials (CRIB) , Università degli Studi di Napoli "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI) , University "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
| | - Filippo Causa
- Center for Advanced Biomaterials for Healthcare@CRIB , Istituto Italiano di Tecnologia (IIT) , Largo Barsanti e Matteucci 53 , 80125 Naples , Italy
- InterdisciplinaryResearch Centre on Biomaterials (CRIB) , Università degli Studi di Napoli "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
- Dipartimento di Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI) , University "Federico II" , Piazzale Tecchio 80 , 80125 Naples , Italy
| |
Collapse
|
13
|
Varicella-Zoster Virus Expresses Multiple Small Noncoding RNAs. J Virol 2017; 91:JVI.01710-17. [PMID: 29021397 DOI: 10.1128/jvi.01710-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Many herpesviruses express small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), that may play roles in regulating lytic and latent infections. None have yet been reported in varicella-zoster virus (VZV; also known as human herpesvirus 3 [HHV-3]). Here we analyzed next-generation sequencing (NGS) data for small RNAs in VZV-infected fibroblasts and human embryonic stem cell-derived (hESC) neurons. Two independent bioinformatics analyses identified more than 20 VZV-encoded 20- to 24-nucleotide RNAs, some of which are predicted to have stem-loop precursors potentially representing miRNAs. These sequences are perfectly conserved between viruses from three clades of VZV. One NGS-identified sequence common to both bioinformatics analyses mapped to the repeat regions of the VZV genome, upstream of the predicted promoter of the immediate early gene open reading frame 63 (ORF63). This miRNA candidate was detected in each of 3 independent biological repetitions of NGS of RNA from fibroblasts and neurons productively infected with VZV using TaqMan quantitative PCR (qPCR). Importantly, transfected synthetic RNA oligonucleotides antagonistic to the miRNA candidate significantly enhanced VZV plaque growth rates. The presence of 6 additional small noncoding RNAs was also verified by TaqMan qPCR in productively infected fibroblasts and ARPE19 cells. Our results show VZV, like other human herpesviruses, encodes several sncRNAs and miRNAs, and some may regulate infection of host cells.IMPORTANCE Varicella-zoster virus is an important human pathogen, with herpes zoster being a major health issue in the aging and immunocompromised populations. Small noncoding RNAs (sncRNAs) are recognized as important actors in modulating gene expression, and this study demonstrates the first reported VZV-encoded sncRNAs. Many are clustered to a small genomic region, as seen in other human herpesviruses. At least one VZV sncRNA was expressed in productive infection of neurons and fibroblasts that is likely to reduce viral replication. Since sncRNAs have been suggested to be potential targets for antiviral therapies, identification of these molecules in VZV may provide a new direction for development of treatments for painful herpes zoster.
Collapse
|
14
|
Kim H, Iizasa H, Kanehiro Y, Fekadu S, Yoshiyama H. Herpesviral microRNAs in Cellular Metabolism and Immune Responses. Front Microbiol 2017; 8:1318. [PMID: 28769892 PMCID: PMC5513955 DOI: 10.3389/fmicb.2017.01318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
The microRNAs (miRNAs) function as a key regulator in many biological processes through post-transcriptional suppression of messenger RNAs. Recent advancements have revealed that miRNAs are involved in many biological functions of cells. Not only host cells, but also some viruses encode miRNAs in their genomes. Viral miRNAs regulate cell proliferation, differentiation, apoptosis, and the cell cycle to establish infection and produce viral progeny. Particularly, miRNAs encoded by herpes virus families play integral roles in persistent viral infection either by regulation of metabolic processes or the immune response of host cells. The life-long persistent infection of gamma herpes virus subfamilies, such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, induces host cells to malignant transformation. The unbalanced metabolic processes and evasion from host immune surveillance by viral miRNAs are induced either by direct targeting of key proteins or indirect regulation of multiple signaling pathways. We provide an overview of the pathogenic roles of viral miRNAs in cellular metabolism and immune responses during herpesvirus infection.
Collapse
Affiliation(s)
- Hyoji Kim
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| | - Yuichi Kanehiro
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| | - Sintayehu Fekadu
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane UniversityShimane, Japan
| |
Collapse
|
15
|
Song J, Hu Y, Li J, Zheng H, Wang J, Guo L, Ning R, Li H, Yang Z, Fan H, Liu L. Different microRNA profiles reveal the diverse outcomes induced by EV71 and CA16 infection in human umbilical vein endothelial cells using high-throughput sequencing. PLoS One 2017; 12:e0177657. [PMID: 28531227 PMCID: PMC5439704 DOI: 10.1371/journal.pone.0177657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022] Open
Abstract
Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) remain the predominant pathogens in hand, foot, and mouth disease (HFMD), but the factors underlying the pathogenesis of EV71 and CA16 infections have not been elucidated. Recently, the functions of microRNAs (miRNAs) in pathogen-host interactions have been highlighted. In the present study, we performed comprehensive miRNA profiling in EV71- and CA16-infected human umbilical vein endothelial cells (HUVECs) at multiple time points using high-throughput sequencing. The results showed that 135 known miRNAs exhibited remarkable differences in expression. Of these, 30 differentially expressed miRNAs presented opposite trends in EV71- and CA16-infected samples. Subsequently, we mainly focused on the 30 key differentially expressed miRNAs through further screening to predict targets. Gene ontology (GO) and pathway analysis of the predicted targets showed the enrichment of 14 biological processes, 9 molecular functions, 8 cellular components, and 85 pathways. The regulatory networks of these miRNAs with predicted targets, GOs, pathways, and co-expression genes were determined, suggesting that miRNAs display intricate regulatory mechanisms during the infection phase. Consequently, we specifically analyzed the hierarchical GO categories of the predicted targets involved in biological adhesion. The results indicated that the distinct changes induced by EV71 and CA16 infection may be partly linked to the function of the blood-brain barrier. Taken together, this is the first report describing miRNA expression profiles in HUVECs with EV71 and CA16 infections using high-throughput sequencing. Our data provide useful insights that may help to elucidate the different host-pathogen interactions following EV71 and CA16 infection and offer novel therapeutic targets for these infections.
Collapse
Affiliation(s)
- Jie Song
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yajie Hu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jiaqi Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Huiwen Zheng
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jingjing Wang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Lei Guo
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Ruotong Ning
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Hongzhe Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Zening Yang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Haitao Fan
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infections Disease, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
- * E-mail:
| |
Collapse
|
16
|
Presence of Viral microRNA in Extracellular Environments. EBioMedicine 2017; 20:9-10. [PMID: 28495208 PMCID: PMC5478208 DOI: 10.1016/j.ebiom.2017.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
|
17
|
Latorre J, Moreno-Navarrete JM, Mercader JM, Sabater M, Rovira Ò, Gironès J, Ricart W, Fernández-Real JM, Ortega FJ. Decreased lipid metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD. Int J Obes (Lond) 2017; 41:620-630. [PMID: 28119530 DOI: 10.1038/ijo.2017.21] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/07/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVE Many controversies regarding the association of liver miRNAs with obesity and nonalcoholic fatty liver diseases (NAFLD) call for additional validations. This study sought to investigate variations in genes and hepatic miRNAs in a sample of obese patients with or without NAFLD and human hepatocytes (HH). SUBJECTS/METHODS A total of 60 non-consecutive obese women following bariatric surgery were recruited. Subjects were classified as NAFLD (n=17), borderline (n=24) and controls (n=19) with normal enzymatic profile, liver histology and ultrasound assessments. Profiling of 744 miRNAs was performed in 8 obese women with no sign of hepatic disease and 11 NAFLD patients. Additional validation and expression of genes related to de novo fatty acid (FA) biosynthesis, uptake, transport and β-oxidation; glucose metabolism, and inflammation was tested in the extended sample. Induction of NAFLD-related genes and miRNAs was examined in HepG2 cells and primary HH treated with palmitic acid (PA), a combination of palmitate and oleic acid, or high glucose, and insulin (HG) mimicking insulin resistance in NAFLD. RESULTS In the discovery sample, 14 miRNAs were associated with NAFLD. Analyses in the extended sample confirmed decreased miR-139-5p, miR-30b-5p, miR-122-5p and miR-422a, and increased miR-146b-5p in obese subjects with NAFLD. Multiple linear regression analyses disclosed that NAFLD contributed independently to explain miR-139-5p (P=0.005), miR-30b-5p (P=0.005), miR-122-5p (P=0.021), miR-422a (P=0.007) and miR-146a (P=0.033) expression variance after controlling for confounders. Decreased miR-122-5p in liver was associated with impaired FA usage. Expression of inflammatory and macrophage-related genes was opposite to decreased miR-30b-5p, miR-139-5p and miR-422a, whereas increased miR-146b-5p was associated with FABP4 and decreased glucose metabolism and FA mobilization. In partial agreement, PA (but not HG) led to decreased miR-139-5p, miR-30b-5p, miR-422a and miR-146a in vitro, in parallel with increased lipogenesis and FA transport, decreased glucose metabolism and diminished FA oxidation. CONCLUSION This study confirms decreased liver glucose and lipid metabolism but increased FA biosynthesis coupled with changes in five unique miRNAs in obese patients with NAFLD.
Collapse
Affiliation(s)
- J Latorre
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta' Carretera de França s/n, Girona, Spain
| | - J M Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta' Carretera de França s/n, Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn) and Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - J M Mercader
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - M Sabater
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta' Carretera de França s/n, Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn) and Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ò Rovira
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta' Carretera de França s/n, Girona, Spain
| | - J Gironès
- Department of Surgery, Hospital Dr. Josep Trueta of Girona, Girona, Spain
| | - W Ricart
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta' Carretera de França s/n, Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn) and Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - J M Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta' Carretera de França s/n, Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn) and Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - F J Ortega
- Department of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta' Carretera de França s/n, Girona, Spain.,CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn) and Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
18
|
The Effect of Oseltamivir on the Disease Progression of Lethal Influenza A Virus Infection: Plasma Cytokine and miRNA Responses in a Mouse Model. DISEASE MARKERS 2016; 2016:9296457. [PMID: 27110056 PMCID: PMC4824134 DOI: 10.1155/2016/9296457] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 12/25/2022]
Abstract
Lethal influenza A virus infection leads to acute lung injury and possibly lethal complications. There has been a continuous effort to identify the possible predictors of disease severity. Unlike earlier studies, where biomarkers were analyzed on certain time points or days after infection, in this study biomarkers were evaluated over the entire course of infection. Circulating proinflammatory cytokines and/or miRNAs that track with the onset and progression of lethal A/Puerto Rico/8/34 (PR8) influenza A virus infection and their response to oseltamivir treatment were investigated up to 10 days after infection. Changes in plasma cytokines (IL-1β, IL-10, IL-12p70, IL-6, KC, TNF-α, and IFN-γ) and several candidate miRNAs were profiled. Among the cytokines analyzed, IL-6 and KC/GRO cytokines appeared to correlate with peak viral titer. Over the selected 48 miRNAs profiled, certain miRNAs were up- or downregulated in a manner that was dependent on the oseltamivir treatment and disease severity. Our findings suggest that IL-6 and KC/GRO cytokines can be a potential disease severity biomarker and/or marker for the progression/remission of infection. Further studies to explore other cytokines, miRNAs, and lung injury proteins in serum with different subtypes of influenza A viruses with varying disease severity may provide new insight into other unique biomarkers.
Collapse
|