1
|
Barros Araújo CB, da Silva Soares IL, da Silva Lima DP, Barros RM, de Lima Damasceno BPG, Oshiro-Junior JA. Polyvinyl Alcohol Nanofibers Blends as Drug Delivery System in Tissue Regeneration. Curr Pharm Des 2023; 29:1149-1162. [PMID: 37157221 DOI: 10.2174/1381612829666230508144912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 05/10/2023]
Abstract
Nanofibers have shown promising clinical results in the process of tissue regeneration since they provide a similar structure to the extracellular matrix of different tissues, high surface-to-volume ratio and porosity, flexibility, and gas permeation, offering topographical features that stimulate cell adhesion and proliferation. Electrospinning is one of the most used techniques for manufacturing nanomaterials due to its simplicity and low cost. In this review, we highlight the use of nanofibers produced with polyvinyl alcohol and polymeric associations (PVA/blends) as a matrix for release capable of modifying the pharmacokinetic profile of different active ingredients in the regeneration of connective, epithelial, muscular, and nervous tissues. Articles were selected by three independent reviewers by analyzing the databases, such as Web of Science, PubMed, Science Direct, and Google Scholar (last 10 years). Descriptors used were "nanofibers", "poly (vinyl alcohol)", "muscle tissue", "connective tissue", "epithelial tissue", and "neural tissue engineering". The guiding question was: How do different compositions of polyvinyl alcohol polymeric nanofibers modify the pharmacokinetics of active ingredients in different tissue regeneration processes? The results demonstrated the versatility of the production of PVA nanofibers by solution blow technique with different actives (lipo/hydrophilic) and with pore sizes varying between 60 and 450 nm depending on the polymers used in the mixture, which influences the drug release that can be controlled for hours or days. The tissue regeneration showed better cellular organization and greater cell proliferation compared to the treatment with the control group, regardless of the tissue analyzed. We highlight that, among all blends, the combinations PVA/PCL and PVA/CS showed good compatibility and slow degradation, indicating their use in prolonged times of biodegradation, thus benefiting tissue regeneration in bone and cartilage connective tissues, acting as a physical barrier that results in guided regeneration, and preventing the invasion of cells from other tissues with increased proliferation rate.
Collapse
Affiliation(s)
- Camila Beatriz Barros Araújo
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - Ingrid Larissa da Silva Soares
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
- Research Center in Pharmaceutical Sciences, UNIFACISA University Center, Manoel Cardoso Palhano, Campina Grande, 58408-326, Paraíba, Brazil
| | - Diego Paulo da Silva Lima
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - Rafaella Moreno Barros
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
| | - João Augusto Oshiro-Junior
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Av. Juvêncio Arruda, S/N, Campina Grande, 58429-600, Paraíba, Brazil
- Research Center in Pharmaceutical Sciences, UNIFACISA University Center, Manoel Cardoso Palhano, Campina Grande, 58408-326, Paraíba, Brazil
| |
Collapse
|
2
|
Sawah D, Sahloul M, Ciftci F. Nano-material utilization in stem cells for regenerative medicine. BIOMED ENG-BIOMED TE 2022; 67:429-442. [DOI: 10.1515/bmt-2022-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
Abstract
The utilization of nanotechnology in regenerative medicine has been globally proven to be the main solution to many issues faced with tissue engineering today, and the theoretical and empirical investigations of the association of nanomaterials with stem cells have made significant progress as well. For their ability to self-renew and differentiate into a variety of cell types, stem cells have become popular candidates for cell treatment in recent years, particularly in cartilage and Ocular regeneration. However, there are still several challenges to overcome before it may be used in a wide range of therapeutic contexts. This review paper provides a review of the various implications of nanomaterials in tissue and cell regeneration, the stem cell and scaffold application in novel treatments, and the basic developments in stem cell-based therapies, as well as the hurdles that must be solved for nanotechnology to be used in its full potential. Due to the increased interest in the continuously developing field of nanotechnology, demonstrating, and pinpointing the most recognized and used applications of nanotechnology in regenerative medicine became imperative to provide students, researchers, etc. who are interested.
Collapse
Affiliation(s)
- Darin Sawah
- Department of Biomedical Engineering , Fatih Sultan Mehmet Vakif University , Istanbul , Turkey
| | - Maha Sahloul
- Department of Biomedical Engineering , Fatih Sultan Mehmet Vakif University , Istanbul , Turkey
| | - Fatih Ciftci
- Department of Biomedical Engineering , Fatih Sultan Mehmet Vakif University , Istanbul , Turkey
| |
Collapse
|
3
|
Ul Haq A, Carotenuto F, Di Nardo P, Francini R, Prosposito P, Pescosolido F, De Matteis F. Extrinsically Conductive Nanomaterials for Cardiac Tissue Engineering Applications. MICROMACHINES 2021; 12:914. [PMID: 34442536 PMCID: PMC8402139 DOI: 10.3390/mi12080914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/09/2023]
Abstract
Myocardial infarction (MI) is the consequence of coronary artery thrombosis resulting in ischemia and necrosis of the myocardium. As a result, billions of contractile cardiomyocytes are lost with poor innate regeneration capability. This degenerated tissue is replaced by collagen-rich fibrotic scar tissue as the usual body response to quickly repair the injury. The non-conductive nature of this tissue results in arrhythmias and asynchronous beating leading to total heart failure in the long run due to ventricular remodelling. Traditional pharmacological and assistive device approaches have failed to meet the utmost need for tissue regeneration to repair MI injuries. Engineered heart tissues (EHTs) seem promising alternatives, but their non-conductive nature could not resolve problems such as arrhythmias and asynchronous beating for long term in-vivo applications. The ability of nanotechnology to mimic the nano-bioarchitecture of the extracellular matrix and the potential of cardiac tissue engineering to engineer heart-like tissues makes it a unique combination to develop conductive constructs. Biomaterials blended with conductive nanomaterials could yield conductive constructs (referred to as extrinsically conductive). These cell-laden conductive constructs can alleviate cardiac functions when implanted in-vivo. A succinct review of the most promising applications of nanomaterials in cardiac tissue engineering to repair MI injuries is presented with a focus on extrinsically conductive nanomaterials.
Collapse
Affiliation(s)
- Arsalan Ul Haq
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.C.); (P.D.N.); (F.P.)
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
| | - Felicia Carotenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.C.); (P.D.N.); (F.P.)
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
| | - Paolo Di Nardo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.C.); (P.D.N.); (F.P.)
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
- L.L. Levshin Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Roberto Francini
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Paolo Prosposito
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Francesca Pescosolido
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.C.); (P.D.N.); (F.P.)
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
| | - Fabio De Matteis
- CIMER, Centre for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.F.); (P.P.); (F.D.M.)
- Industrial Engineering Department, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
4
|
Nanoengineering in Cardiac Regeneration: Looking Back and Going Forward. NANOMATERIALS 2020; 10:nano10081587. [PMID: 32806691 PMCID: PMC7466652 DOI: 10.3390/nano10081587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
To deliver on the promise of cardiac regeneration, an integration process between an emerging field, nanomedicine, and a more consolidated one, tissue engineering, has begun. Our work aims at summarizing some of the most relevant prevailing cases of nanotechnological approaches applied to tissue engineering with a specific interest in cardiac regenerative medicine, as well as delineating some of the most compelling forthcoming orientations. Specifically, this review starts with a brief statement on the relevant clinical need, and then debates how nanotechnology can be combined with tissue engineering in the scope of mimicking a complex tissue like the myocardium and its natural extracellular matrix (ECM). The interaction of relevant stem, precursor, and differentiated cardiac cells with nanoengineered scaffolds is thoroughly presented. Another correspondingly relevant area of experimental study enclosing both nanotechnology and cardiac regeneration, e.g., nanoparticle applications in cardiac tissue engineering, is also discussed.
Collapse
|
5
|
|
6
|
Promoting effect of nano hydroxyapatite and vitamin D3 on the osteogenic differentiation of human adipose-derived stem cells in polycaprolactone/gelatin scaffold for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:141-155. [DOI: 10.1016/j.msec.2018.12.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 01/15/2023]
|
7
|
Jahangirian H, Lemraski EG, Rafiee-Moghaddam R, Webster TJ. A review of using green chemistry methods for biomaterials in tissue engineering. Int J Nanomedicine 2018; 13:5953-5969. [PMID: 30323585 PMCID: PMC6177385 DOI: 10.2147/ijn.s163399] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although environmentally safe, or green, technologies have revolutionized other fields (such as consumables, automobiles, etc.), its use in biomaterials is still at its infancy. However, in the few cases in which safe manufacturing technology and materials have been implemented to prevent postpollution and reduce the consumption of synthesized scaffold (such as bone, cartilage, blood cell, nerve, skin, and muscle) has had a significant impact on different applications of tissue engineering. In the present research, we report the use of biological materials as templates for preparing different kinds of tissues and the application of safe green methods in tissue engineering technology. These include green methods for bone and tissue engineering-based biomaterials, which have received the greatest amount of citations in recent years. Thoughts on what is needed for this field to grow are also critically included. In this paper, the impending applications of safe, ecofriendly materials and green methods in tissue engineering have been detailed.
Collapse
Affiliation(s)
- Hossein Jahangirian
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA,
| | | | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA,
| |
Collapse
|
8
|
Zarins J, Pilmane M, Sidhoma E, Salma I, Locs J. Immunohistochemical evaluation after Sr-enriched biphasic ceramic implantation in rabbits femoral neck: comparison of seven different bone conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:119. [PMID: 30030632 DOI: 10.1007/s10856-018-6124-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Strontium (Sr) has shown effectiveness for stimulating bone remodeling. Nevertheless, the exact therapeutic values are not established yet. Authors hypothesized that local application of Sr-enriched ceramics would enhance bone remodeling in constant osteoporosis of rabbits' femoral neck bone. Seven different bone conditions were analyzed: ten healthy rabbits composed a control group, while other twenty underwent ovariectomy and were divided into three groups. Bone defect was filled with hydroxyapatite 30% (HAP) and tricalcium phosphate 70% (TCP) granules in 7 rabbits, 5% of Sr-enriched HAP/TCP granules in 7, but sham defect was left unfilled in 6 rabbits. Bone samples were obtained from operated and non-operated legs 12 weeks after surgery and analyzed by histomorphometry and immunohistochemistry (IMH). Mean trabecular bone area in control group was 0.393 mm2, in HAP/TCP - 0.226 mm2, in HAP/TCP/Sr - 0.234 mm2 and after sham surgery - 0.242 mm2. IMH revealed that HAP/TCP/Sr induced most noticeable increase of nuclear factor kappa beta 105 (NFkB 105), osteoprotegerin (OPG), osteocalcin (OC), bone morphogenetic protein 2/4 (BMP 2/4), collagen type 1α (COL-1α), interleukin 1 (IL-1) with comparison to intact leg; NFkB 105 and OPG rather than pure HAP/TCP or sham bone. We concluded that Sr-enriched biomaterials induce higher potential to improve bone regeneration than pure bioceramics in constant osteoporosis of femoral neck bone. Further studies on bigger osteoporotic animals using Sr-substituted orthopedic implants for femoral neck fixation should be performed to confirm valuable role in local treatment of osteoporotic femoral neck fractures in humans.
Collapse
Affiliation(s)
- Janis Zarins
- Department of Hand and Plastic Surgery, Microsurgery Centre of Latvia, Brivibas Street 410, Riga, Latvia.
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia.
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia
| | - Elga Sidhoma
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda bulvaris 9, Riga, Latvia
| | - Ilze Salma
- Department of Oral and Maxillofacial Surgery, Riga Stradins University, Dzirciema Street 20, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of Riga Technical University, Pulka Street 3, Riga, Latvia
| |
Collapse
|
9
|
Gambara G, Gaebler M, Keilholz U, Regenbrecht CRA, Silvestri A. From Chemotherapy to Combined Targeted Therapeutics: In Vitro and in Vivo Models to Decipher Intra-tumor Heterogeneity. Front Pharmacol 2018; 9:77. [PMID: 29491834 PMCID: PMC5817069 DOI: 10.3389/fphar.2018.00077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
Recent advances in next-generation sequencing and other omics technologies capable to map cell fate provide increasing evidence on the crucial role of intra-tumor heterogeneity (ITH) for cancer progression. The different facets of ITH, from genomic to microenvironmental heterogeneity and the hierarchical cellular architecture originating from the cancer stem cell compartment, contribute to the range of tumor phenotypes. Decoding these complex data resulting from the analysis of tumor tissue complexity poses a challenge for developing novel therapeutic strategies that can counteract tumor evolution and cellular plasticity. To achieve this aim, the development of in vitro and in vivo cancer models that resemble the complexity of ITH is crucial in understanding the interplay of cells and their (micro)environment and, consequently, in testing the efficacy of new targeted treatments and novel strategies of tailoring combinations of treatments to the individual composition of the tumor. This challenging approach may be an important cornerstone in overcoming the development of pharmaco-resistances during multiple lines of treatment. In this paper, we report the latest advances in patient-derived 3D (PD3D) cell cultures and patient-derived tumor xenografts (PDX) as in vitro and in vivo models that can retain the genetic and phenotypic heterogeneity of the tumor tissue.
Collapse
Affiliation(s)
- Guido Gambara
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuela Gaebler
- Department of Interdisciplinary Oncology, HELIOS Klinikum Berlin-Buch GmbH, Berlin, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|
10
|
Clifford HW, Cassidy AP, Vaughn C, Tsai ES, Seres B, Patel N, O'Neill HL, Hewage E, Cassidy JW. Profiling lung adenocarcinoma by liquid biopsy: can one size fit all? Cancer Nanotechnol 2016; 7:10. [PMID: 27933110 PMCID: PMC5119837 DOI: 10.1186/s12645-016-0023-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/08/2016] [Indexed: 11/10/2022] Open
Abstract
Background Cancer is first and foremost a disease of the genome. Specific genetic signatures within a tumour are prognostic of disease outcome, reflect subclonal architecture and intratumour heterogeneity, inform treatment choices and predict the emergence of resistance to targeted therapies. Minimally invasive liquid biopsies can give temporal resolution to a tumour’s genetic profile and allow the monitoring of treatment response through levels of circulating tumour DNA (ctDNA). However, the detection of ctDNA in repeated liquid biopsies is currently limited by economic and time constraints associated with targeted sequencing. Methods Here we bioinformatically profile the mutational and copy number spectrum of The Cancer Genome Network’s lung adenocarcinoma dataset to uncover recurrently mutated genomic loci. Results We build a panel of 400 hotspot mutations and show that the coverage extends to more than 80% of the dataset at a median depth of 8 mutations per patient. Additionally, we uncover several novel single-nucleotide variants present in more than 5% of patients, often in genes not commonly associated with lung adenocarcinoma. Conclusion With further optimisation, this hotspot panel could allow molecular diagnostics laboratories to build curated primer banks for ‘off-the-shelf’ monitoring of ctDNA by droplet-based digital PCR or similar techniques, in a time- and cost-effective manner.
Collapse
Affiliation(s)
- Harry W Clifford
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK.,St. Edmund Hall, University of Oxford, Queen's Lane, Oxford, UK
| | - Amy P Cassidy
- NHS Greater Glasgow and Clyde, University of Glasgow, Glasgow, UK
| | - Courtney Vaughn
- UNC School of Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Evaline S Tsai
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK.,Peterhouse, University of Cambridge, Trumpington Street, Cambridge, UK
| | - Bianka Seres
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nirmesh Patel
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK.,Division of Cancer Studies, King's Health Partners AHSC, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | - Emil Hewage
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK
| | - John W Cassidy
- OneTest Diagnostics, Cambridge Applied Research, Future Business Centre, Cambridge, UK.,Queens' College, University of Cambridge, Silver Street, Cambridge, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Cassidy JW, Batra AS, Greenwood W, Bruna A. Patient-derived tumour xenografts for breast cancer drug discovery. Endocr Relat Cancer 2016; 23:T259-T270. [PMID: 27702751 PMCID: PMC5118939 DOI: 10.1530/erc-16-0251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 12/24/2022]
Abstract
Despite remarkable advances in our understanding of the drivers of human malignancies, new targeted therapies often fail to show sufficient efficacy in clinical trials. Indeed, the cost of bringing a new agent to market has risen substantially in the last several decades, in part fuelled by extensive reliance on preclinical models that fail to accurately reflect tumour heterogeneity. To halt unsustainable rates of attrition in the drug discovery process, we must develop a new generation of preclinical models capable of reflecting the heterogeneity of varying degrees of complexity found in human cancers. Patient-derived tumour xenograft (PDTX) models prevail as arguably the most powerful in this regard because they capture cancer's heterogeneous nature. Herein, we review current breast cancer models and their use in the drug discovery process, before discussing best practices for developing a highly annotated cohort of PDTX models. We describe the importance of extensive multidimensional molecular and functional characterisation of models and combination drug-drug screens to identify complex biomarkers of drug resistance and response. We reflect on our own experiences and propose the use of a cost-effective intermediate pharmacogenomic platform (the PDTX-PDTC platform) for breast cancer drug and biomarker discovery. We discuss the limitations and unanswered questions of PDTX models; yet, still strongly envision that their use in basic and translational research will dramatically change our understanding of breast cancer biology and how to more effectively treat it.
Collapse
Affiliation(s)
- John W Cassidy
- Breast Cancer Functional GenomicsCRUK Cambridge Research Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Ankita S Batra
- Breast Cancer Functional GenomicsCRUK Cambridge Research Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Wendy Greenwood
- Breast Cancer Functional GenomicsCRUK Cambridge Research Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Alejandra Bruna
- Department of OncologyUniversity of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Loeblein M, Perry G, Tsang SH, Xiao W, Collard D, Coquet P, Sakai Y, Teo EHT. Three-Dimensional Graphene: A Biocompatible and Biodegradable Scaffold with Enhanced Oxygenation. Adv Healthc Mater 2016; 5:1177-91. [PMID: 26946189 DOI: 10.1002/adhm.201501026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/18/2016] [Indexed: 01/14/2023]
Abstract
Owing to its high porosity, specific surface area and three-dimensional structure, three-dimensional graphene (3D-C) is a promising scaffold material for tissue engineering, regenerative medicine as well as providing a more biologically relevant platform for living organisms in vivo studies. Recently, its differentiation effects on cells growth and anti-inflammation properties have also been demonstrated. Here, we report a complete study of 3D-C as a fully adequate scaffold for tissue engineering and systematically analyze its biocompatibility and biodegradation mechanism. The metabolic activities of liver cells (HepG2 hepatocarcinoma cells) on 3D-C are studied and our findings show that cell growth on 3D-C has high cell viability (> 90%), low lactate production (reduced by 300%) and its porous structure also provides an excellent oxygenation platform. 3D-C is also biodegradable via a 2-step oxidative biodegradation process by first, disruption of domains and lift off of smaller graphitic particles from the surface of the 3D-C and subsequently, the decomposition of these graphitic flakes. In addition, the speed of the biodegradation can be tuned with pretreatment of O2 plasma.
Collapse
Affiliation(s)
- Manuela Loeblein
- School of Electrical and Electronic Engineering; Nanyang Technological University; Block S1, 50 Nanyang Avenue 639798 Singapore
- CNRS International NTU Thales Research Alliance (CINTRA); 50 Nanyang Avenue 639798 Singapore
| | - Guillaume Perry
- Laboratory for Integrated Micro-Mechatronic Systems (LIMMS); Centre National de la Recherche Scientifique/Institute of Industrial Science; University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Siu Hon Tsang
- Temasek Laboratories@NTU; Nanyang Technological University; 50 Nanyang Avenue 639798 Singapore
| | - Wenjin Xiao
- Institute of Industrial Science; University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Dominique Collard
- Laboratory for Integrated Micro-Mechatronic Systems (LIMMS); Centre National de la Recherche Scientifique/Institute of Industrial Science; University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Philippe Coquet
- CNRS International NTU Thales Research Alliance (CINTRA); 50 Nanyang Avenue 639798 Singapore
- IEMN UMR 8520; Université de Lille 1; Villeneuve D'Ascq Cedex 59652 France
| | - Yasuyuki Sakai
- Institute of Industrial Science; University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Edwin Hang Tong Teo
- School of Electrical and Electronic Engineering; Nanyang Technological University; Block S1, 50 Nanyang Avenue 639798 Singapore
- CNRS International NTU Thales Research Alliance (CINTRA); 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
13
|
O'Neill HL, Cassidy AP, Harris OB, Cassidy JW. BMP2/BMPR1A is linked to tumour progression in dedifferentiated liposarcomas. PeerJ 2016; 4:e1957. [PMID: 27114889 PMCID: PMC4841227 DOI: 10.7717/peerj.1957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/31/2016] [Indexed: 01/30/2023] Open
Abstract
Bone Morphogenic Protein 2 (BMP2) is a multipurpose cytokine, important in the development of bone and cartilage, and with a role in tumour initiation and progression. BMP2 signal transduction is dependent on two distinct classes of serine/threonine kinase known as the type I and type II receptors. Although the type I receptors (BMPR1A and BMPR1B) are largely thought to have overlapping functions, we find tissue and cellular compartment specific patterns of expression, suggesting potential for distinct BMP2 signalling outcomes dependent on tissue type. Herein, we utilise large publicly available datasets from The Cancer Genome Atlas (TCGA) and Protein Atlas to define a novel role for BMP2 in the progression of dedifferentiated liposarcomas. Using disease free survival as our primary endpoint, we find that BMP2 confers poor prognosis only within the context of high BMPR1A expression. Through further annotation of the TCGA sarcoma dataset, we localise this effect to dedifferentiated liposarcomas but find overall BMP2/BMP receptor expression is equal across subsets. Finally, through gene set enrichment analysis we link the BMP2/BMPR1A axis to increased transcriptional activity of the matrisome and general extracellular matrix remodelling. Our study highlights the importance of continued research into the tumorigenic properties of BMP2 and the potential disadvantages of recombinant human BMP2 (rhBMP2) use in orthopaedic surgery. For the first time, we identify high BMP2 expression within the context of high BMPR1A expression as a biomarker of disease relapse in dedifferentiated liposarcomas.
Collapse
Affiliation(s)
- Hannah L O'Neill
- Aberdeen Royal Infirmary, University of Aberdeen , Aberdeen , United Kingdom
| | - Amy P Cassidy
- Aberdeen Royal Infirmary, University of Aberdeen, Aberdeen, United Kingdom; Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Olivia B Harris
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John W Cassidy
- Queens' College, University of Cambridge, Cambridge Cambridgeshire, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
14
|
Colasante C, Sanford Z, Garfein E, Tepper O. Current Trends in 3D Printing, Bioprosthetics, and Tissue Engineering in Plastic and Reconstructive Surgery. CURRENT SURGERY REPORTS 2016. [DOI: 10.1007/s40137-016-0127-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Cassidy JW, Caldas C, Bruna A. Maintaining Tumor Heterogeneity in Patient-Derived Tumor Xenografts. Cancer Res 2015; 75:2963-8. [PMID: 26180079 PMCID: PMC4539570 DOI: 10.1158/0008-5472.can-15-0727] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/27/2015] [Indexed: 01/10/2023]
Abstract
Preclinical models often fail to capture the diverse heterogeneity of human malignancies and as such lack clinical predictive power. Patient-derived tumor xenografts (PDX) have emerged as a powerful technology: capable of retaining the molecular heterogeneity of their originating sample. However, heterogeneity within a tumor is governed by both cell-autonomous (e.g., genetic and epigenetic heterogeneity) and non-cell-autonomous (e.g., stromal heterogeneity) drivers. Although PDXs can largely recapitulate the polygenomic architecture of human tumors, they do not fully account for heterogeneity in the tumor microenvironment. Hence, these models have substantial utility in basic and translational research in cancer biology; however, study of stromal or immune drivers of malignant progression may be limited. Similarly, PDX models offer the ability to conduct patient-specific in vivo and ex vivo drug screens, but stromal contributions to treatment responses may be under-represented. This review discusses the sources and consequences of intratumor heterogeneity and how these are recapitulated in the PDX model. Limitations of the current generation of PDXs are discussed and strategies to improve several aspects of the model with respect to preserving heterogeneity are proposed.
Collapse
Affiliation(s)
- John W Cassidy
- Breast Cancer Functional Genomics, Cancer Research UK Cambridge Institute, Department of Oncology, University of Cambridge, Li Ka-Shing Centre, Cambridge, United Kingdom
| | - Carlos Caldas
- Breast Cancer Functional Genomics, Cancer Research UK Cambridge Institute, Department of Oncology, University of Cambridge, Li Ka-Shing Centre, Cambridge, United Kingdom
| | - Alejandra Bruna
- Breast Cancer Functional Genomics, Cancer Research UK Cambridge Institute, Department of Oncology, University of Cambridge, Li Ka-Shing Centre, Cambridge, United Kingdom.
| |
Collapse
|
16
|
Lim D, Lee E, Kim H, Park S, Baek S, Yoon J. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices. SOFT MATTER 2015; 11:1606-1613. [PMID: 25594916 DOI: 10.1039/c4sm02564d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Extensive research efforts have been devoted to the development of hydrogel microfibers for tissue engineering, because the vascular structure is related to the transport of nutrients and oxygen as well as the control of metabolic and mechanical functions in the human body. Even though stimuli-responsive properties would enhance the potential applicability of hydrogel microfibers for artificial tissue architectures, previous studies of their fabrication have not considered changes in the microfibers in response to external stimuli. In this work, we prepared temperature-responsive poly(N-isopropylacrylamide) (PNIPAm) microfibers with controlled shapes and sizes by the in situ photo-polymerization of aqueous monomers loaded in calcium alginate templates generated from microcapillary devices. We found that the shape and size of the hydrogel microfibers could be controlled by adjusting the injection positions of the solutions and varying the diameters of the inner capillary, respectively. We further fabricated light-responsive materials by incorporating photothermal magnetite nanoparticles (MNPs) within the temperature-responsive PNIPAm hydrogel microfibers. Because the MNPs incorporated into the PNIPAm microfibers generated heat upon the absorption of visible light, we could demonstrate volume changes in the microfibers triggered by both visible light irradiation and temperature.
Collapse
Affiliation(s)
- Daeun Lim
- Department of Chemistry, Dong-A University, 37 Nakdong-Daero 550beon-gil, Saha-gu, Busan 604-714, Republic of Korea.
| | | | | | | | | | | |
Collapse
|