1
|
Chen H, Wu Y, Wang J, Li Y, Chen Y, Wang X, Lv H, Liu X. Tilianin enhances the antitumor effect of sufentanil on non-small cell lung cancer. J Biochem Mol Toxicol 2024; 38:e23761. [PMID: 38952040 DOI: 10.1002/jbt.23761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Non-small cell cancer (NSCLC) is the most common cancer in the world, but its effective therapeutic methods are limited. Tilianin and sufentanil alleviate various human tumors. This research aimed to clarify the functions and mechanisms of Tilianin and sufentanil in NSCLC. The functions of Tilianin and sufentanil on NSCLC cell viability, apoptosis, mitochondrial dysfunction, and immunity in vitro were examined using Cell Counting Kit-8 assay, flow cytometry, reactive oxygen species level analysis, CD8+ T cell percentage analysis, Western blot, and enzyme-linked immunosorbent assay, respectively. The molecular mechanism regulated by Tilianin and sufentanil in NSCLC was assessed using Western blot, and immunofluorescence assays. Meanwhile, the roles of Tilianin and sufentanil in NSCLC tumor growth, apoptosis, and immunity in vivo were determined by establishing a tumor xenograft mouse model, immunohistochemistry, and Western blot assays. When sufentanil concentration was proximity 2 nM, the inhibition rate of NSCLC cell viability was 50%. The IC50 for A549 cells was 2.36 nM, and the IC50 for H1299 cells was 2.18 nM. The IC50 of Tilianin for A549 cells was 38.7 μM, and the IC50 of Tilianin for H1299 cells was 44.6 μM. Functionally, 0.5 nM sufentanil and 10 μM Tilianin reduced NSCLC cell (A549 and H1299) viability in a dose-dependent manner. Also, 0.5 nM sufentanil and 10 μM Tilianin enhanced NSCLC cell apoptosis, yet this impact was strengthened after a combination of Tilianin and Sufentanil. Furthermore, 0.5 nM sufentanil and 10 μM Tilianin repressed NSCLC cell mitochondrial dysfunction and immunity, and these impacts were enhanced after a combination of Tilianin and Sufentanil. Mechanistically, 0.5 nM sufentanil and 10 μM Tilianin repressed the NF-κB pathway in NSCLC cells, while this repression was strengthened after a combination of Tilianin and Sufentanil. In vivo experimental data further clarified that 1 µg/kg sufentanil and 10 mg/kg Tilianin reduced NSCLC growth, immunity, and NF-κB pathway-related protein levels, yet these trends were enhanced after a combination of Tilianin and Sufentanil. Tilianin strengthened the antitumor effect of sufentanil in NSCLC.
Collapse
Affiliation(s)
- Huixia Chen
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Yulin Wu
- Department of Anesthesia Operation Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jiazheng Wang
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Yike Li
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Yongxue Chen
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Xinbo Wang
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Hangyu Lv
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| | - Xinyan Liu
- Department of Anesthesiology, Handan Central Hospital, Handan, China
| |
Collapse
|
2
|
Saha T, Bhowmick B, Sengupta D, Banerjee S, Mitra R, Sarkar A, Chaudhuri T, Bhattacharjee G, Nath S, Roychoudhury S, Sengupta M. No association of the common Asian mitochondrial DNA haplogroups with lung cancer in East Indian population. J Basic Clin Physiol Pharmacol 2023; 34:663-668. [PMID: 35338796 DOI: 10.1515/jbcpp-2021-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Mitochondrial dysfunction has long been associated with the pathogenesis of lung cancer (LC). Mitochondrial DNA (mtDNA) haplogroups have been reported to modify the risk of LC in a few different populations; however, no study has been done among the Indians. Here, we explore the relationship between mtDNA haplogroups and LC in a representative eastern Indian sample set. METHODS Different combinations of six mtDNA SNPs, which define the major Asian mtDNA haplogroups M and N, and their sub-haplogroups D, G, M7, R, and F were genotyped via polymerase chain reaction (PCR) - restriction fragment length polymorphism (RFLP) - sequencing approach in 94 smoker LC patients and 100 healthy smoker controls from an eastern Indian cohort. RESULTS The distribution of 7 mtDNA haplogroups did not show any significant differences between patients and controls (p<0.05). We did not find sub-haplogroup M7 in our study population. CONCLUSIONS Our study is the first to indicate that the major Asian mtDNA haplogroups have no significant (p<0.05) association with LC in East Indian population.
Collapse
Affiliation(s)
- Tania Saha
- Department of Genetics, University of Calcutta, Kolkata, West Bengal, India
| | - Bismoy Bhowmick
- Department of Genetics, University of Calcutta, Kolkata, West Bengal, India
| | - Debmalya Sengupta
- Department of Genetics, University of Calcutta, Kolkata, West Bengal, India
| | - Souradeep Banerjee
- Department of Genetics, University of Calcutta, Kolkata, West Bengal, India
| | - Ritabrata Mitra
- Department of Pulmonary medicine (Chest), IPGMER, Kolkata, West Bengal, India
| | - Abhijit Sarkar
- Department of Radiotherapy, SGCCRI, Kolkata, West Bengal, India
| | | | | | - Somsubhra Nath
- Molecular Biology and Basic Research Division, SGCCRI, Kolkata, West Bengal, India
| | | | - Mainak Sengupta
- Department of Genetics, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Murakami A, Takeda D, Hirota J, Saito I, Amano-Iga R, Yatagai N, Arimoto S, Kakei Y, Akashi M, Hasegawa T. Relationship of Mitochondrial-Related Protein Expression with the Differentiation, Metastasis, and Poor Prognosis of Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:4071. [PMID: 37627097 PMCID: PMC10452162 DOI: 10.3390/cancers15164071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction and respiratory function changes have been consistently associated with the initiation and progression of cancer. The purpose of this study was to retrospectively investigate the expression of mitochondrial tumor-suppressor and DNA-repair proteins in patients with oral squamous cell carcinoma (OSCC) and to evaluate the relationship between their expression and prognosis. We enrolled 197 patients with OSCC who underwent surgical resection between August 2013 and October 2018. Clinical, pathological, and epidemiological data were retrospectively collected from hospital records. The expression of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), mitochondrial transcription factor A, mitochondrial tumor suppressor gene 1, silent information regulator 3, and 8-hydroxyguanine DNA glycosylase was investigated using immunochemistry. The 3-year disease-specific survival (DSS) rates of patients showing positive expression of all selected proteins were significantly higher than those of patients showing a lack of expression. Multivariate analysis revealed that the expression of PGC-1α (hazard ratio, 4.684) and vascular invasion (hazard ratio, 5.690) can predict the DSS rate (p < 0.001). Low PGC-1α expression and vascular invasion are potential clinically effective predictors of the prognosis of OSCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Takumi Hasegawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (A.M.); (D.T.); (S.A.); (Y.K.); (M.A.)
| |
Collapse
|
4
|
Finsterer J, Ghosh R. Effective treatment of choreaballism due to an MT-CYB variant with haloperidol, tetrabenazine, and antioxidants. Clin Case Rep 2023; 11:e7592. [PMID: 37351357 PMCID: PMC10282112 DOI: 10.1002/ccr3.7592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Hypokinetic and hyperkinetic movement disorders are a common phenotypic feature of mitochondrial disorders. Choreaballism has been reported particularly in patients with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome and in maternally inherited diabetes and deafness syndrome. The pathophysiological basis of movement disorders in mitochondrial disorders is the involvement of the basal ganglia or the midbrain. Haloperidol and mitochondrial cocktails have proven beneficial in some of these cases. Here we present another patient with mitochondrial choreaballism who benefited significantly from symptomatic therapy. The patient is a 14-year-old male with a history of hypoacusis, ptosis, and focal tonic-clonic seizures of the upper/lower limbs on either side since childhood. Since this time he has also developed occasional, abnormal involuntary limb movements, choreaballism, facial grimacing, carpopedal spasms, and abnormal lip sensations. He was diagnosed with a non-syndromic mitochondrial disorder after detection of the variant m.15043G > A in MT-CYB. Seizures have been successfully treated with lamotrigine. Hypocalcemia was treated with intravenous calcium. For hypoparathyroidism calcitriol was given. Choreaballism was treated with haloperidol and tetrabenazine. In addition, he received coenzyme Q10, L-carnitine, thiamine, riboflavin, alpha-lipoic acid, biotin, vitamin-C, vitamin-E, and creatine-monohydrate. With this therapy, the choreaballism disappeared completely. This case shows that mitochondrial disorders can manifest with cognitive impairment, seizures, movement disorder, hypoacusis, endocrinopathy, cardiomyopathy, neuropathy, and myopathy, that choreaballism can be a phenotypic feature of multisystem mitochondrial disorders, and that choreaballism favorably responds to haloperidol, tetrabenazine, and possibly to a cocktail of antioxidants, cofactors, and vitamins.
Collapse
Affiliation(s)
| | - Ritwik Ghosh
- Department of General MedicineBurdwan Medical College & HospitalBurdwanWest BengalIndia
| |
Collapse
|
5
|
Zhang X, Dong W, Zhang J, Liu W, Yin J, Shi D, Ma W. A Novel Mitochondrial-Related Nuclear Gene Signature Predicts Overall Survival of Lung Adenocarcinoma Patients. Front Cell Dev Biol 2021; 9:740487. [PMID: 34760888 PMCID: PMC8573348 DOI: 10.3389/fcell.2021.740487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Lung cancer is the leading cause of cancer-related death worldwide, of which lung adenocarcinoma (LUAD) is one of the main histological subtypes. Mitochondria are vital for maintaining the physiological function, and their dysfunction has been found to be correlated with tumorigenesis and disease progression. Although, some mitochondrial-related genes have been found to correlate with the clinical outcomes of multiple tumors solely. The integrated relationship between nuclear mitochondrial genes (NMGs) and the prognosis of LUAD remains unclear. Methods: The list of NMGs, gene expression data, and related clinical information of LUAD were downloaded from public databases. Bioinformatics methods were used and obtained 18 prognostic related NMGs to construct a risk signature. Results: There were 18 NMGs (NDUFS2, ATP8A2, SCO1, COX14, COA6, RRM2B, TFAM, DARS2, GARS, YARS2, EFG1, GFM1, MRPL3, MRPL44, ISCU, CABC1, HSPD1, and ETHE1) identified by LASSO regression analysis. The mRNA expression of these 18 genes was positively correlated with their relative linear copy number alteration (CNA). Meanwhile, the established risk signature could effectively distinguish high- and low-risk patients, and its predictive capacity was validated in three independent gene expression omnibus (GEO) cohorts. Notably, a significantly lower prevalence of actionable EGFR alterations was presented in patients with high-risk NMGs signature but accompanied with a more inflame immune tumor microenvironment. Additionally, multicomponent Cox regression analysis showed that the model was stable when risk score, tumor stage, and lymph node stage were considered, and the 1-, 3-, and 5-year AUC were 0.74, 0.75, and 0.70, respectively. Conclusion: Together, this study established a signature based on NMGs that is a prognostic biomarker for LUAD patients and has the potential to be widely applied in future clinical settings.
Collapse
Affiliation(s)
- Xiangwei Zhang
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Dong
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jishuai Zhang
- Department of General Thoracic, Feicheng Hospital Affiliated to Shandong First Medical University, Feicheng, China
| | - Wenqiang Liu
- Department of General Thoracic, Shenxian County People's Hospital of Shandong Provincial Group, Liaocheng, China
| | - Jingjing Yin
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Duozhi Shi
- Lifehealthcare Clinical Laboratories, Hangzhou, China
| | - Wei Ma
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Patergnani S, Bouhamida E, Leo S, Pinton P, Rimessi A. Mitochondrial Oxidative Stress and "Mito-Inflammation": Actors in the Diseases. Biomedicines 2021; 9:biomedicines9020216. [PMID: 33672477 PMCID: PMC7923430 DOI: 10.3390/biomedicines9020216] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
A decline in mitochondrial redox homeostasis has been associated with the development of a wide range of inflammatory-related diseases. Continue discoveries demonstrate that mitochondria are pivotal elements to trigger inflammation and stimulate innate immune signaling cascades to intensify the inflammatory response at front of different stimuli. Here, we review the evidence that an exacerbation in the levels of mitochondrial-derived reactive oxygen species (ROS) contribute to mito-inflammation, a new concept that identifies the compartmentalization of the inflammatory process, in which the mitochondrion acts as central regulator, checkpoint, and arbitrator. In particular, we discuss how ROS contribute to specific aspects of mito-inflammation in different inflammatory-related diseases, such as neurodegenerative disorders, cancer, pulmonary diseases, diabetes, and cardiovascular diseases. Taken together, these observations indicate that mitochondrial ROS influence and regulate a number of key aspects of mito-inflammation and that strategies directed to reduce or neutralize mitochondrial ROS levels might have broad beneficial effects on inflammatory-related diseases.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Esmaa Bouhamida
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Sara Leo
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (E.B.); (S.L.); (P.P.)
- Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| |
Collapse
|
7
|
Li N, Zhao J, Ma Y, Roy B, Liu R, Kristiansen K, Gao Q. Dissecting the expression landscape of mitochondrial genes in lung squamous cell carcinoma and lung adenocarcinoma. Oncol Lett 2018; 16:3992-4000. [PMID: 30128019 PMCID: PMC6096099 DOI: 10.3892/ol.2018.9113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/25/2018] [Indexed: 12/31/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) are the two major subtypes of lung cancer. To explore mitochondrial respiratory gene expression profiles in LUSC and LUAD, RNA sequencing data from The Cancer Genome Atlas was used for comprehensive analyses to establish the molecular characteristics of LUSC and LUAD. To elucidate expression profiles, subtypes were defined using unsupervised clustering of mitochondrial gene expression data. Differences in nuclear gene expression levels, signaling pathways and tumor microenvironments between subtypes were investigated. The analysis revealed that mitochondrial respiratory genes were generally expressed at lower levels in tumor tissues compared with matched control tissues. The expression of mitochondrially encoded NADH dehydrogenase 5 or 6 was associated with tumor progression in LUAD and LUSC. Patients were clustered into three subgroups based on the expression profile of 13 mitochondrial protein-encoding genes, and patients in Cluster 3 exhibited poor survival rates compared with patients from Cluster 1. Furthermore, this association was also observed in another independent data set. Further analyses of the expression of nuclear-encoded genes in the three clusters revealed the enrichment of several cancer-associated signaling pathways in Cluster 3, particularly the apoptotic signaling pathway, suggesting a potential association between the decreased expression of mitochondrial DNA genes and increased tumor aggressiveness. Furthermore, the analyses of immune cell compositions in the tumor microenvironment detected a significant increase in the proportion of CD4+ T cells and a decrease in the proportion of macrophages in LUAD compared with LUSC (P=0.0000104 and P=0.0000105, respectively). In conclusion, the present study revealed an association between the expression patterns of mitochondrial-encoded genes and lung cancer, which may contribute to novel therapeutic strategies for patients with LUSC and LUAD.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Medicine, Medical College, Eastern Liaoning University, Dandong, Liaoning 118003, P.R. China
| | - Jing Zhao
- BGI Genomics, BGI-Shenzhen, Yantian, Shenzhen, Guangdong 518083, P.R. China
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yibing Ma
- Department of Pathology, Dandong Central Hospital, Dandong, Liaoning 118001, P.R. China
| | - Bhaskar Roy
- BGI Genomics, BGI-Shenzhen, Yantian, Shenzhen, Guangdong 518083, P.R. China
| | - Ren Liu
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Karsten Kristiansen
- BGI Genomics, BGI-Shenzhen, Yantian, Shenzhen, Guangdong 518083, P.R. China
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen 2100, Denmark
| | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Yantian, Shenzhen, Guangdong 518083, P.R. China
| |
Collapse
|
8
|
Luchini C, Nottegar A, Vaona A, Stubbs B, Demurtas J, Maggi S, Veronese N. Female-specific association among I, J and K mitochondrial genetic haplogroups and cancer: A longitudinal cohort study. Cancer Genet 2018; 224-225:29-36. [PMID: 29778233 DOI: 10.1016/j.cancergen.2018.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Recent studies highlighted the role of mitochondrial dysregulation in cancer, suggesting that the different mitochondrial haplogroups might play a role in tumorigenesis and risk of cancer development. Our aim is to investigate whether any mitochondrial haplogroups carried a significant higher risk of cancer development in a large prospective cohort of North American people. The haplogroup assignment was performed by a combination of sequencing and PCR-RFLP techniques. Our specific outcome of interest was the incidence of any cancer during follow-up period. Overall, 3222 participants were included in the analysis. Women having I, J, K haplogroup reported a significant higher incidence of cancer compared to people with other haplogroups (p < 0.0001), whilst in men non association was found. In the multivariate analysis, women having I, J, K mitochondrial haplogroup reported a 50% increased risk of cancer (HR = 1.50; 95%CI: 1.04-2.16; p = 0.03). This gender-linked association may be partly explained by the role of mitochondrial function in female-specific (e.g. BRCA-driven) oncogenesis, but further studies are needed to better understand this potential correlation. Our findings may have important implications for cancer epidemiology and prevention.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Piazzale Scuro, 10, 37134 Verona, Italy.
| | - Alessia Nottegar
- Department of Surgery, Section of Anatomical Pathology, San Bortolo Hospital, Vicenza, Italy
| | - Alberto Vaona
- Primary Care Department, Azienda ULSS20 Verona, Verona, Italy
| | - Brendon Stubbs
- South London and Maudsley NHS FoundationTrust, Denmark Hill, London SE5 8AZ, United Kingdom; Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8 AF, United Kingdom; Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Jacopo Demurtas
- Primary Care Department, Azienda USL Toscana Sud Est, Grosseto, Italy
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy
| | - Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy; Institute for clinical Research and Education in Medicine (IREM), Padova, Italy
| |
Collapse
|
9
|
Liu X, Chen Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med 2017; 15:207. [PMID: 29029603 PMCID: PMC5640915 DOI: 10.1186/s12967-017-1306-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/30/2017] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are critically involved in reactive oxygen species (ROS)-dependent lung diseases, such as lung fibrosis, asbestos, chronic airway diseases and lung cancer. Mitochondrial DNA (mtDNA) encodes mitochondrial proteins and is more sensitive to oxidants than nuclear DNA. Damage to mtDNA causes mitochondrial dysfunction, including electron transport chain impairment and mitochondrial membrane potential loss. Furthermore, damaged mtDNA also acts as a damage-associated molecular pattern (DAMP) that drives inflammatory and immune responses. In this review, crosstalk among alveolar epithelial cells, alveolar macrophages and mitochondria is examined. ROS-related transcription factors and downstream cell signaling pathways are also discussed. We conclude that targeting oxidative stress with antioxidant agents, such as thiol molecules, polyphenols and superoxide dismutase (SOD), and promoting mitochondrial biogenesis should be considered as novel strategies for treating lung diseases that currently have no effective treatment options.
Collapse
Affiliation(s)
- Xiaojing Liu
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Diseases, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.,Geriatric Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No 600 Yishan Road, Shanghai, China
| | - Zhihong Chen
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Diseases, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
10
|
Alshamsan A, Khan S, Imran A, Aljuffali IA, Alsaleh K. Prediction of Chlamydia pneumoniae protein localization in host mitochondria and cytoplasm and possible involvements in lung cancer etiology: a computational approach. Saudi Pharm J 2017; 25:1151-1157. [PMID: 30166903 PMCID: PMC6111117 DOI: 10.1016/j.jsps.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/30/2017] [Indexed: 01/22/2023] Open
Abstract
Collecting evidence suggests that the intercellular infection of Chlamydia pneumoniae in lungs contributes to the etiology of lung cancer. Many proteins of Chlamydia pneumoniae outmanoeuvre the various system of the host. The infection may regulate various factors, which can influence the growth of lung cancer in affected persons. In this in-silico study, we predict potential targeting of Chlamydia pneumoniae proteins in mitochondrial and cytoplasmic comportments of host cell and their possible involvement in growth and development of lung cancer. Various cellular activities are controlled in mitochondria and cytoplasm, where the localization of Chlamydia pneumoniae proteins may alter the normal functioning of host cells. The rationale of this study is to find out and explain the connection between Chlamydia pneumoniae infection and lung cancer. A sum of 183 and 513 proteins were predicted to target in mitochondria and cytoplasm of host cell out of total 1112 proteins of Chlamydia pneumoniae. In particular, many targeted proteins may interfere with normal growth behaviour of host cells, thereby altering the decision of program cell death. Present article provides a potential connection of Chlamydia pneumoniae protein targeting and proposed that various targeted proteins may play crucial role in lung cancer etiology through diverse mechanisms.
Collapse
Affiliation(s)
- Aws Alshamsan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Shahanavaj Khan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahamad Imran
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A Aljuffali
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alsaleh
- Oncology Center, King Saud Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Spotlight on the relevance of mtDNA in cancer. Clin Transl Oncol 2016; 19:409-418. [PMID: 27778302 DOI: 10.1007/s12094-016-1561-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
The potential role of the mitochondrial genome has recently attracted interest because of its high mutation frequency in tumors. Different aspects of mtDNA make it relevant for cancer's biology, such as it encodes a limited but essential number of genes for OXPHOS biogenesis, it is particularly susceptible to mutations, and its copy number can vary. Moreover, most ROS in mitochondria are produced by the electron transport chain. These characteristics place the mtDNA in the center of multiple signaling pathways, known as mitochondrial retrograde signaling, which modifies numerous key processes in cancer. Cybrid studies support that mtDNA mutations are relevant and exert their effect through a modification of OXPHOS function and ROS production. However, there is still much controversy regarding the clinical relevance of mtDNA mutations. New studies should focus more on OXPHOS dysfunction associated with a specific mutational signature rather than the presence of mutations in the mtDNA.
Collapse
|
12
|
Mahjabeen I, Kayani MA. Loss of Mitochondrial Tumor Suppressor Genes Expression Is Associated with Unfavorable Clinical Outcome in Head and Neck Squamous Cell Carcinoma: Data from Retrospective Study. PLoS One 2016; 11:e0146948. [PMID: 26785117 PMCID: PMC4718451 DOI: 10.1371/journal.pone.0146948] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial genes play important roles in cellular energy metabolism, free radical generation, and apoptosis. Dysregulation of these genes have long been suspected to contribute to the generation of reactive oxygen species (ROS), increased proliferation and progression of cancer. A family of orthologues of yeast silent information regulator 3 (SIRT3), 4 (SIRT4) and mitochondrial tumor suppressor 1 (MTUS1) are important mitochondrial tumor suppressor genes which play an important role in the progression of multiple cancers. However, their role in the development of oxidative stress, enhanced proliferation and progression of head and neck squamous cell carcinoma (HNSCC) has not yet been studied. In this study we aimed to test the association between reduced mitochondrial tumor suppressor genes' activities and enhancement in tissue oxidative stress and cell proliferation in HNSCC cases. The expression of mitochondrial tumor suppressor genes (SIRT3, SIRT4 and MTUS1), mitochondrial DNA repair gene (OGG1-2a) and a proliferation marker (Ki-67) was studied in a study cohort of 120 HNSCC patients and controls with reverse transcriptase polymerase chain reaction (RT-PCR) and real-time PCR (qPCR) in order to determine the potential prognostic significance of these genes. A statistically significant downregulation of SIRT3 (p<0.001), SIRT4 (p<0.0001), MTUS1 (p<0.002) and OGG1 (p<0.0001) was observed in HNSCC compared to control samples. Ki-67 was also overexpressed (p<0.0001) in HNSCC versus control samples. Additionally, to explore gene-gene relationship, we observed a positive spearmen correlation between SIRT3 versus SIRT4 (r = 0.523***, p<0.0001), SIRT3 versus MTUS1 (r = 0.273***, p<0.001), SIRT3 versus OGG1-2a (r = 0.213*, p<0.03), SIRT4 versus OGG1 (r = 0.338***, p<0.0001) and MTUS1 versus OGG1-2a (r = 0.215*, p<0.03) in HNSCC cases. A negative spearman correlation was observed between OGG1 versus Ki-67 (r = -0.224**, p<0.01) and OGG1-2a versus Ki-67 (r = -0.224**, p<0.01) in HNSCC cases. Here we report that the deregulation of mitochondrial tumor suppressor genes (SIRT3, SIRT4 and MTUS1) in relation to decreased expression of mitochondrial DNA repair gene OGG1-2a and increased proliferation (measured by proliferation marker Ki-67) may be considered important factors in the development of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Ishrat Mahjabeen
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| |
Collapse
|
13
|
The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis. Int J Mol Sci 2015; 16:21486-519. [PMID: 26370974 PMCID: PMC4613264 DOI: 10.3390/ijms160921486] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/29/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022] Open
Abstract
Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer.
Collapse
|