1
|
Demirdjian L, Xu Y, Bahrami-Samani E, Pan Y, Stein S, Xie Z, Park E, Wu YN, Xing Y. Detecting Allele-Specific Alternative Splicing from Population-Scale RNA-Seq Data. Am J Hum Genet 2020; 107:461-472. [PMID: 32781045 PMCID: PMC7477012 DOI: 10.1016/j.ajhg.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
RNA sequencing (RNA-seq) is a powerful technology for studying human transcriptome variation. We introduce PAIRADISE (Paired Replicate Analysis of Allelic Differential Splicing Events), a method for detecting allele-specific alternative splicing (ASAS) from RNA-seq data. Unlike conventional approaches that detect ASAS events one sample at a time, PAIRADISE aggregates ASAS signals across multiple individuals in a population. By treating the two alleles of an individual as paired, and multiple individuals sharing a heterozygous SNP as replicates, we formulate ASAS detection using PAIRADISE as a statistical problem for identifying differential alternative splicing from RNA-seq data with paired replicates. PAIRADISE outperforms alternative statistical models in simulation studies. Applying PAIRADISE to replicate RNA-seq data of a single individual and to population-scale RNA-seq data across many individuals, we detect ASAS events associated with genome-wide association study (GWAS) signals of complex traits or diseases. Additionally, PAIRADISE ASAS analysis detects the effects of rare variants on alternative splicing. PAIRADISE provides a useful computational tool for elucidating the genetic variation and phenotypic association of alternative splicing in populations.
Collapse
|
2
|
Tian J, Wang Z, Mei S, Yang N, Yang Y, Ke J, Zhu Y, Gong Y, Zou D, Peng X, Wang X, Wan H, Zhong R, Chang J, Gong J, Han L, Miao X. CancerSplicingQTL: a database for genome-wide identification of splicing QTLs in human cancer. Nucleic Acids Res 2020; 47:D909-D916. [PMID: 30329095 PMCID: PMC6324030 DOI: 10.1093/nar/gky954] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing (AS) is a widespread process that increases structural transcript variation and proteome diversity. Aberrant splicing patterns are frequently observed in cancer initiation, progress, prognosis and therapy. Increasing evidence has demonstrated that AS events could undergo modulation by genetic variants. The identification of splicing quantitative trait loci (sQTLs), genetic variants that affect AS events, might represent an important step toward fully understanding the contribution of genetic variants in disease development. However, no database has yet been developed to systematically analyze sQTLs across multiple cancer types. Using genotype data from The Cancer Genome Atlas and corresponding AS values calculated by TCGASpliceSeq, we developed a computational pipeline to identify sQTLs from 9 026 tumor samples in 33 cancer types. We totally identified 4 599 598 sQTLs across all cancer types. We further performed survival analyses and identified 17 072 sQTLs associated with patient overall survival times. Furthermore, using genome-wide association study (GWAS) catalog data, we identified 1 180 132 sQTLs overlapping with known GWAS linkage disequilibrium regions. Finally, we constructed a user-friendly database, CancerSplicingQTL (http://www.cancersplicingqtl-hust.com/) for users to conveniently browse, search and download data of interest. This database provides an informative sQTL resource for further characterizing the potential functional roles of SNPs that control transcript isoforms in human cancer.
Collapse
Affiliation(s)
- Jianbo Tian
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shufang Mei
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Nan Yang
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yang Yang
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Juntao Ke
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ying Zhu
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yajie Gong
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Danyi Zou
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiating Peng
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiaoyang Wang
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Hao Wan
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Rong Zhong
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Jiang Chang
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Jing Gong
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.,HubeiKey Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Xiaoping Miao
- Key Laboratory of Environmental Health of Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| |
Collapse
|
3
|
Lye JJ, Williams A, Baralle D. Exploring the RNA Gap for Improving Diagnostic Yield in Primary Immunodeficiencies. Front Genet 2019; 10:1204. [PMID: 31921280 PMCID: PMC6917654 DOI: 10.3389/fgene.2019.01204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Challenges in diagnosing primary immunodeficiency are numerous and diverse, with current whole-exome and whole-genome sequencing approaches only able to reach a molecular diagnosis in 25–60% of cases. We assess these problems and discuss how RNA-focused analysis has expanded and improved in recent years and may now be utilized to gain an unparalleled insight into cellular immunology. We review how investigation into RNA biology can give information regarding the differential expression, monoallelic expression, and alternative splicing—which have important roles in immune regulation and function. We show how this information can inform bioinformatic analysis pipelines and aid in the variant filtering process, expediting the identification of causal variants—especially those affecting splicing—and enhance overall diagnostic ability. We also demonstrate the challenges, which remain in the design of this type of investigation, regarding technological limitation and biological considerations and suggest potential directions for the clinical applications.
Collapse
Affiliation(s)
- Jed J Lye
- University of Southampton Medical School, University of Southampton, Southampton, United Kingdom
| | - Anthony Williams
- University of Southampton Medical School, University of Southampton, Southampton, United Kingdom.,Wessex Investigational Sciences Hub Laboratory (WISH Lab), Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Diana Baralle
- University of Southampton Medical School, University of Southampton, Southampton, United Kingdom.,Faculty of Medicine, Highfield Campus, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
4
|
Saraiva-Agostinho N, Barbosa-Morais NL. psichomics: graphical application for alternative splicing quantification and analysis. Nucleic Acids Res 2019; 47:e7. [PMID: 30277515 PMCID: PMC6344878 DOI: 10.1093/nar/gky888] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022] Open
Abstract
Alternative pre-mRNA splicing generates functionally distinct transcripts from the same gene and is involved in the control of multiple cellular processes, with its dysregulation being associated with a variety of pathologies. The advent of next-generation sequencing has enabled global studies of alternative splicing in different physiological and disease contexts. However, current bioinformatics tools for alternative splicing analysis from RNA-seq data are not user-friendly, disregard available exon-exon junction quantification or have limited downstream analysis features. To overcome such limitations, we have developed psichomics, an R package with an intuitive graphical interface for alternative splicing quantification and downstream dimensionality reduction, differential splicing and gene expression and survival analyses based on The Cancer Genome Atlas, the Genotype-Tissue Expression project, the Sequence Read Archive project and user-provided data. These integrative analyses can also incorporate clinical and molecular sample-associated features. We successfully used psichomics in a laptop to reveal alternative splicing signatures specific to stage I breast cancer and associated novel putative prognostic factors.
Collapse
Affiliation(s)
- Nuno Saraiva-Agostinho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Nuno L Barbosa-Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
5
|
Alvelos MI, Juan-Mateu J, Colli ML, Turatsinze JV, Eizirik DL. When one becomes many-Alternative splicing in β-cell function and failure. Diabetes Obes Metab 2018; 20 Suppl 2:77-87. [PMID: 30230174 PMCID: PMC6148369 DOI: 10.1111/dom.13388] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cell dysfunction and death are determinant events in type 1 diabetes (T1D), but the molecular mechanisms behind β-cell fate remain poorly understood. Alternative splicing is a post-transcriptional mechanism by which a single gene generates different mRNA and protein isoforms, expanding the transcriptome complexity and enhancing protein diversity. Neuron-specific and certain serine/arginine-rich RNA binding proteins (RBP) are enriched in β-cells, playing crucial roles in the regulation of insulin secretion and β-cell survival. Moreover, alternative exon networks, regulated by inflammation or diabetes susceptibility genes, control key pathways and processes for the correct function and survival of β-cells. The challenge ahead of us is to understand the precise role of alternative splicing regulators and splice variants on β-cell function, dysfunction and death and develop tools to modulate it.
Collapse
Affiliation(s)
- Maria Inês Alvelos
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Jonàs Juan-Mateu
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Maikel Luis Colli
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Jean-Valéry Turatsinze
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| | - Décio L. Eizirik
- ULB Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles (ULB), Route de Lennik, 808 – CP618, B-1070 Brussels, Belgium
| |
Collapse
|
6
|
Park E, Pan Z, Zhang Z, Lin L, Xing Y. The Expanding Landscape of Alternative Splicing Variation in Human Populations. Am J Hum Genet 2018; 102:11-26. [PMID: 29304370 PMCID: PMC5777382 DOI: 10.1016/j.ajhg.2017.11.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing is a tightly regulated biological process by which the number of gene products for any given gene can be greatly expanded. Genomic variants in splicing regulatory sequences can disrupt splicing and cause disease. Recent developments in sequencing technologies and computational biology have allowed researchers to investigate alternative splicing at an unprecedented scale and resolution. Population-scale transcriptome studies have revealed many naturally occurring genetic variants that modulate alternative splicing and consequently influence phenotypic variability and disease susceptibility in human populations. Innovations in experimental and computational tools such as massively parallel reporter assays and deep learning have enabled the rapid screening of genomic variants for their causal impacts on splicing. In this review, we describe technological advances that have greatly increased the speed and scale at which discoveries are made about the genetic variation of alternative splicing. We summarize major findings from population transcriptomic studies of alternative splicing and discuss the implications of these findings for human genetics and medicine.
Collapse
Affiliation(s)
- Eddie Park
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhicheng Pan
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zijun Zhang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lan Lin
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|