1
|
Fahham N, Zandi F, Ghahremani MH, Ostad SN, Vaziri B, Shahraeini SS, Sardari S. Unraveling Potential Candidate Targets Associated with Expression of
p16INK4a or p16 Truncated Fragment by Comparative Proteomics Analysis. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210728121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
p16 is a tumor suppressor protein that is significantly involved in cycle
regulation through the reduction of cell progression from the G1 phase to the S phase via CDK-cyclin
D/p16INK4a/pRb/E2F cascade. The minimum functional domain of p16 has been uncovered that
may function comparable to wild type p16.
Objective:
To expand the knowledge on molecules and mechanisms by which p16 or p1666-156 fragment
suppresses human fibrosarcoma cell line growth, differential proteome profiles of fibrosarcoma
cells following p16 full length or the functional domain overexpression, were analyzed.
Methods:
Following transfecting HT-1080 fibrosarcoma cells with p16 full length, p1666-156 truncated
form, and pcDNA3.1 empty vector, protein extract of each sample was harvested and clarified
by centrifugation, and then the protein content was determined via Bradford assay. All protein extract
of each sample was analyzed by two-dimensional gel electrophoresis. Immunoblot analysis
was performed as further validation of the expression status of identified proteins.
Results:
Expression of p16 or p1666-156 fragment could induce mostly the common alterations (up/-
down-regulation) of proteome profile of HT-1080 cells. Mass spectrometry identification of the differentially
expressed protein spots revealed several proteins that were grouped in functional clusters,
including cell cycle regulation and proliferation, cell migration and structure, oxidative stress,
protein metabolism, epigenetic regulation, and signal transduction.
Conclusion:
The minimum functional domain of p16 could act in the same way as p16 full length.
Also, these new findings can significantly enrich the understanding of p16 growth-suppressive
function at the molecular level by the introduction of potential candidate targets for new treatment
strategies. Furthermore, the present study provides strong evidence on the functional efficacy of
the identified fragment of p16 for further attempts toward peptidomimetic drug design or gene
transfer to block cancer cell proliferation.
Collapse
Affiliation(s)
- Najmeh Fahham
- Protein Chemistry and Proteomics Laboratory, Biotechnology Research Center, Pasteur Institute of Iran, Tehran,
Iran
| | - Fatemeh Zandi
- Protein Chemistry and Proteomics Laboratory, Biotechnology Research Center, Pasteur Institute of Iran, Tehran,
Iran
| | - Mohammad Hossein Ghahremani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences,
Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences,
Tehran, Iran
| | - Behrouz Vaziri
- Protein Chemistry and Proteomics Laboratory, Biotechnology Research Center, Pasteur Institute of Iran, Tehran,
Iran
| | - Seyed Sadegh Shahraeini
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research
Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research
Centre, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Regneri J, Klotz B, Wilde B, Kottler VA, Hausmann M, Kneitz S, Regensburger M, Maurus K, Götz R, Lu Y, Walter RB, Herpin A, Schartl M. Analysis of the putative tumor suppressor gene cdkn2ab in pigment cells and melanoma of Xiphophorus and medaka. Pigment Cell Melanoma Res 2018; 32:248-258. [PMID: 30117276 DOI: 10.1111/pcmr.12729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/05/2023]
Abstract
In humans, the CDKN2A locus encodes two transcripts, INK4A and ARF. Inactivation of either one by mutations or epigenetic changes is a frequent signature of malignant melanoma and one of the most relevant entry points for melanomagenesis. To analyze whether cdkn2ab, the fish ortholog of CDKN2A, has a similar function as its human counterpart, we studied its action in fish models for human melanoma. Overexpression of cdkn2ab in a Xiphophorus melanoma cell line led to decreased proliferation and induction of a senescence-like phenotype, indicating a melanoma-suppressive function analogous to mammals. Coexpression of Xiphophorus cdkn2ab in medaka transgenic for the mitfa:xmrk melanoma-inducing gene resulted in full suppression of melanoma development, whereas CRISPR/Cas9 knockout of cdkn2ab resulted in strongly enhanced tumor growth. In summary, this provides the first functional evidence that cdkn2ab acts as a potent tumor suppressor gene in fish melanoma models.
Collapse
Affiliation(s)
- Janine Regneri
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Barbara Klotz
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Brigitta Wilde
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Verena A Kottler
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Michael Hausmann
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany
| | | | - Katja Maurus
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Ralph Götz
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Yuan Lu
- Department of Chemistry & Biochemistry, Molecular Biosciences Research Group, Texas State University, San Marcos, Texas
| | - Ronald B Walter
- Department of Chemistry & Biochemistry, Molecular Biosciences Research Group, Texas State University, San Marcos, Texas
| | - Amaury Herpin
- INRA, Fish Physiology and Genomics Institute (INRA-LPGP), Sexual Differentiation and Oogenesis Group (SDOG), Campus de Beaulieu, Rennes Cedex, France
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Biozentrum, Würzburg, Germany.,Comprehensive Cancer Center, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
3
|
Hu XN, Wang JF, Huang YQ, Wang Z, Dong FY, Ma HF, Bao ZJ. Huperzine A attenuates nonalcoholic fatty liver disease by regulating hepatocyte senescence and apoptosis: an in vitro study. PeerJ 2018; 6:e5145. [PMID: 29967757 PMCID: PMC6025153 DOI: 10.7717/peerj.5145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
Objective This study was undertaken to detect if free fatty acids (FFA) induce hepatocyte senescence in L-02 cells and if huperzine A has an anti-aging effect in fatty liver cells. Methods L-02 cells were treated with a FFA mixture (oleate/palmitate, at 3:0, 2:1, 1:1, 1:2 and 0:3 ratios) at different concentrations. Cell viability and fat accumulation rate were assessed by a Cell Counting Kit 8 and Nile Red staining, respectively. The mixture with the highest cell viability and fat accumulation rate was selected to continue with the following experiment. The L-02 cells were divided into five groups, including the control group, FFA group, FFA + 0.1 μmol/L huperzine A (LH) group, FFA + 1.0 μmol/L huperzine A (MH) group and FFA + 10 μmol/L huperzine A (HH) group, and were cultured for 24 h. The expression of senescence-associated β-galactosidase (SA-β-gal) was detected by an SA-β-gal staining kit. The expression levels of aging genes were measured by qRT-PCR. The expression levels of apoptosis proteins were detected by a Western blot. ELISA kits were used to detect inflammatory factors and oxidative stress products. The expression of nuclear factor (NF-κB) and IκBα were detected by immunofluorescence. Results The FFA mixture (oleate/palmitate, at a 2:1 ratio) of 0.5 mmol/L had the highest cell viability and fat accumulation rate, which was preferable for establishing an in vitro fatty liver model. The expression of inflammatory factors (TNF-α and IL-6) and oxidants Malonaldehyde (MDA), 4-hydroxynonenal (HNE) and reactive oxygen species (ROS) also increased in the L-02 fatty liver cells. The expression levels of aging markers and aging genes, such as SA-β-gal, p16, p21, p53 and pRb, increased more in the L-02 fatty liver cells than in the L-02 cells. The total levels of the apoptosis-associated proteins Bcl2, Bax, Bax/Bcl-2, CyCt and cleaved caspase 9 were also upregulated in the L-02 fatty liver cells. All of the above genes and proteins were downregulated in the huperzine A and FFA co-treatment group. In the L-02 fatty liver cells, the expression of IκBα decreased, while the expression of NF-κB increased. After the huperzine A and FFA co-treatment, the expression of IκBα increased, while the expression of NF-κB decreased. Conclusion Fatty liver cells showed an obvious senescence and apoptosis phenomenon. Huperzine A suppressed hepatocyte senescence, and it might exert its anti-aging effect via the NF-κB pathway.
Collapse
Affiliation(s)
- Xiao-Na Hu
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jiao-Feng Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yi-Qin Huang
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Zheng Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Fang-Yuan Dong
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Hai-Fen Ma
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Zhi-Jun Bao
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
4
|
Eslamparast A, Ghahremani MH, Sardari S. In silico study of fragile histidine triad interaction domains with MDM2 and p53. Adv Biomed Res 2014; 3:170. [PMID: 25221773 PMCID: PMC4162077 DOI: 10.4103/2277-9175.139178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/01/2013] [Indexed: 11/29/2022] Open
Abstract
Background: Fragile histidine triad (FHIT) is considered as a member of the histidine triad (HIT) nucleotide-binding protein superfamily regarded as a putative tumor suppressor executing crucial role in inhibiting p53 degradation by MDM2. Accumulating evidences indicate FHIT interaction with p53 or MDM2; however, there is no certain study deciphering functional domains of FHIT involving in the interaction with MDM2 and/or p53. In this regard, such evident interaction can spring in mind determining important domains of FHIT binding to MDM2 with regard to p53. Materials and Methods: Since there were not any previous studies appraising complete three-dimensional structures of target molecules, molecular modeling was carried out to construct three-dimensional models of full FHIT, MDM2, P53 and also FHIT segments. Truncated structures of FHIT were created to reveal critical regions engaging in FHIT interaction. Results: Given the shape and shape/electrostatic total energy, FHIT structures (β1-5), (β3-7, α1), and (β5-7, α1) appeared to be better candidates than other structures in interaction with full MDM2. Furthermore, FHIT structures (β6-7), (β6-7, α1), (β4-7, α1) were considered to be better than other structures in interaction with p53. FHIT truncates that interact with MDM2 presented lower energy levels than FHIT truncates interacting with p53. Conclusion: These findings are beneficial to understand the mechanism of the FHIT-MDM2-p53 complex activation for designing inhibitory compounds.
Collapse
Affiliation(s)
- Ameneh Eslamparast
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Soroush Sardari
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Eslamparast A, Ghahremani MH, Sardari S. Computational Survey of FHIT, A Putative Human Tumor Suppressor, Truncates Structure. Avicenna J Med Biotechnol 2014; 6:64-71. [PMID: 24834308 PMCID: PMC4009097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/15/2013] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Fragile Histidine Triad protein (FHIT), as a known tumor suppressor protein, has been proposed to play crucial role in inhibiting p53 degradation by MDM2. Studies have confirmed FHIT interaction with p53 or MDM2, although functional interacting domains of FHIT with MDM2 and/or p53 are not completely defined. Thus, through determining the significant structural interacting domains of FHIT, information with regard to MDM2 and p53 would be provided. As there were no previous studies evaluating the interaction of optimized important parts of target molecules, docking study was employed. METHODS Truncated structures of FHIT were screened to reveal critical sections engaging in FHIT interaction. HEX program was used in order to study the interaction of target structures. RESULTS Given the total energy, FHIT structures (β5-7, α1) and (α1) of FHIT were showed to be better candidates in comparison with other structures in interaction with optimized MDM2 part. Furthermore, FHIT structures (β4-7, α1) and (β5-7, α1) were considered to be better than other structures in interaction with optimized p53 part. FHIT truncates which interact with MDM2 optimized part exhibited lower energy levels than FHIT truncates which interact with p53 optimized part. CONCLUSION Our results can be useful for designing new inhibitors of this protein complex interaction which would result in tumor repression.
Collapse
Affiliation(s)
| | - Mohammad Hossein Ghahremani
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran,Corresponding author: Soroush Sardari, Ph.D., Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran. Tel: +98 21 66405535, Fax: +98 21 66465132. E-mail:;
| |
Collapse
|
6
|
Rahimi HR, Arastoo M, Ostad SN. A Comprehensive Review of Punica granatum (Pomegranate) Properties in Toxicological, Pharmacological, Cellular and Molecular Biology Researches. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2012; 11:385-400. [PMID: 24250463 PMCID: PMC3832175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Punica granatum (Pg), commonly known as pomegranate (Pg), is a member of the monogeneric family, Punicaceae, and is mainly found in Iran which is considered to be its primary centre of origin. Pg and its chemical components possess various pharmacological and toxicological properties including antioxidant, anti-inflammatory (by inhibiting pro-inflammatory cytokines), anti-cancer and anti-angiogenesis activities. They also show inhibitory effects on invasion/motility, cell cycle, apoptosis, and vital enzymes such as cyclooxygenase (COX), lipooxygenase (LOX), cytochrome P450 (CYP450), phospholipase A2 (PLA2), ornithine decarboxylase (ODC), carbonic anhydrase (CA), 17beta-hydroxysteroid dehydrogenase (17β-HSDs) and serine protease (SP). Furthermore, they can stimulate cell differentiation and possess anti-mutagenic effects. Pg can also interfere with several signaling pathways including PI3K/AKT, mTOR, PI3K, Bcl-X, Bax, Bad, MAPK, ERK1/2, P38, JNK, and caspase. However, the exact mechanisms for its pharmacological and toxicological properties remain to be unclear and need further evaluation. These properties strongly suggest a wide range use of Pg for clinical applications. This review will discuss the areas for which Pg has shown therapeutic properties in different mechanisms.
Collapse
Affiliation(s)
- Hamid Reza Rahimi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Arastoo
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences,
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran. ,Corresponding author: E-mail:
| |
Collapse
|
7
|
Fahham N, Sardari S, Ostad SN, Vaziri B, Ghahremani MH. C-terminal domain of p16(INK4a) is adequate in inducing cell cycle arrest, growth inhibition and CDK4/6 interaction similar to the full length protein in HT-1080 fibrosarcoma cells. J Cell Biochem 2011; 111:1598-606. [PMID: 21053367 DOI: 10.1002/jcb.22892] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tumor suppressor p16(INK4a) has earned widespread attention in cancer studies since its discovery as an inhibitor of cyclin-dependent kinases (CDKs) 4/6. Structurally, it consists of four complete ankyrin repeats, believed to be involved in CDK4 interaction. According to the previous disparities concerning the importance of domains and inactivating mutations in p16, we aimed to search for the domain possessing the functional properties of the full length protein. Upon our in silico screening analyses followed by experimental assessments, we have identified the novel minimum functional domain of p16 to be the C-terminal half including ankyrin repeats III, IV and the C-terminal flanking region accompanied by loops 2 and 3. Transfection of this truncated form into HT-1080 human fibrosarcoma cells, lacking endogenous p16, revealed that it is able to inhibit cell growth and proliferation equivalent to p16(INK4a). The functional analysis showed that this fragment like p16 can interact with CDK4/6, block the entry into S phase of the cell cycle and suppress growth as indicated by colony formation assay. Identification of p16 minimum functional domain can be of benefit to the future peptidomimetic drug design as well as gene transfer for cancer therapy.
Collapse
Affiliation(s)
- Najmeh Fahham
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | |
Collapse
|