1
|
Cao SK, Liu R, Sayyed A, Sun F, Song R, Wang X, Xiu Z, Li X, Tan BC. Regulator of Chromosome Condensation 1-Domain Protein DEK47 Functions on the Intron Splicing of Mitochondrial Nad2 and Seed Development in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:695249. [PMID: 34408760 PMCID: PMC8365749 DOI: 10.3389/fpls.2021.695249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
In flowering plants, mitochondrial genes contain approximately 20-26 introns. Splicing of these introns is essential for mitochondrial gene expression and function. Recent studies have revealed that both nucleus- and mitochondrion-encoded factors are required for intron splicing, but the mechanism of splicing remains largely unknown. Elucidation of the mechanism necessitates a complete understanding of the splicing factors. Here, we report the identification of a regulator of chromosome condensation 1 (RCC1)-domain protein DEK47 that is required for mitochondrial intron splicing and seed development in maize. Loss of function in Dek47 severely arrests embryo and endosperm development, resulting in a defective kernel (dek) phenotype. DEK47 harbors seven RCC1 domains and is targeted to mitochondria. Null mutation of DEK47 causes a deficiency in the splicing of all four nad2 introns, abolishing the production of mature nad2 transcript and resulting in the disassembly and severely reduced activity of mitochondrial complex I. In response, the expression of the alternative oxidase AOX2 is sharply increased in dek47. These results indicate that Dek47 is required for the splicing of all the nad2 introns in mitochondria, and essential for complex I assembly, and kernel development in maize.
Collapse
Affiliation(s)
- Shi-Kai Cao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Rui Liu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Ruolin Song
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhihui Xiu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaojie Li
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Bao-Cai Tan,
| |
Collapse
|
2
|
Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, Mighell AJ. Amelogenesis Imperfecta; Genes, Proteins, and Pathways. Front Physiol 2017; 8:435. [PMID: 28694781 PMCID: PMC5483479 DOI: 10.3389/fphys.2017.00435] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 01/11/2023] Open
Abstract
Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the possibility of novel treatments and prevention strategies for AI.
Collapse
Affiliation(s)
- Claire E L Smith
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - James A Poulter
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Agne Antanaviciute
- Section of Genetics, School of Medicine, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Jennifer Kirkham
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Steven J Brookes
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Chris F Inglehearn
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Alan J Mighell
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Oral Medicine, School of Dentistry, University of LeedsLeeds, United Kingdom
| |
Collapse
|
3
|
Gachomo EW, Jimenez-Lopez JC, Baptiste LJ, Kotchoni SO. GIGANTUS1 (GTS1), a member of Transducin/WD40 protein superfamily, controls seed germination, growth and biomass accumulation through ribosome-biogenesis protein interactions in Arabidopsis thaliana. BMC PLANT BIOLOGY 2014; 14:37. [PMID: 24467952 PMCID: PMC3914372 DOI: 10.1186/1471-2229-14-37] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/24/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND WD40 domains have been found in a plethora of eukaryotic proteins, acting as scaffolding molecules assisting proper activity of other proteins, and are involved in multi-cellular processes. They comprise several stretches of 44-60 amino acid residues often terminating with a WD di-peptide. They act as a site of protein-protein interactions or multi-interacting platforms, driving the assembly of protein complexes or as mediators of transient interplay among other proteins. In Arabidopsis, members of WD40 protein superfamily are known as key regulators of plant-specific events, biologically playing important roles in development and also during stress signaling. RESULTS Using reverse genetic and protein modeling approaches, we characterize GIGANTUS1 (GTS1), a new member of WD40 repeat protein in Arabidopsis thaliana and provide evidence of its role in controlling plant growth development. GTS1 is highly expressed during embryo development and negatively regulates seed germination, biomass yield and growth improvement in plants. Structural modeling analysis suggests that GTS1 folds into a β-propeller with seven pseudo symmetrically arranged blades around a central axis. Molecular docking analysis shows that GTS1 physically interacts with two ribosomal protein partners, a component of ribosome Nop16, and a ribosome-biogenesis factor L19e through β-propeller blade 4 to regulate cell growth development. CONCLUSIONS Our results indicate that GTS1 might function in plant developmental processes by regulating ribosomal structural features, activities and biogenesis in plant cells. Our results suggest that GIGANTUS1 might be a promising target to engineer transgenic plants with higher biomass and improved growth development for plant-based bioenergy production.
Collapse
Affiliation(s)
- Emma W Gachomo
- Department of Biology, Rutgers University, 315 Penn St., Camden, NJ 08102, USA
- Center for Computational and Integrative Biology (CCIB), Rutgers University, 315 Penn St., Camden, NJ 08102, USA
| | - Jose C Jimenez-Lopez
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research (CSIC), Profesor Albareda 1, Granada E-18008, Spain
| | - Lyla Jno Baptiste
- Department of Biology, Rutgers University, 315 Penn St., Camden, NJ 08102, USA
| | - Simeon O Kotchoni
- Department of Biology, Rutgers University, 315 Penn St., Camden, NJ 08102, USA
- Center for Computational and Integrative Biology (CCIB), Rutgers University, 315 Penn St., Camden, NJ 08102, USA
| |
Collapse
|
4
|
Sánchez-Guiu I, Antón AI, García-Barberá N, Navarro-Fernández J, Martínez C, Fuster JL, Couselo JM, Ortuño FJ, Vicente V, Rivera J, Lozano ML. Chediak-Higashi syndrome: description of two novel homozygous missense mutations causing divergent clinical phenotype. Eur J Haematol 2013; 92:49-58. [DOI: 10.1111/ejh.12203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Isabel Sánchez-Guiu
- Centro Regional de Hemodonacion; Hospital JM Morales Meseguer; University of Murcia; Murcia Spain
| | - Ana I. Antón
- Centro Regional de Hemodonacion; Hospital JM Morales Meseguer; University of Murcia; Murcia Spain
| | - Nuria García-Barberá
- Centro Regional de Hemodonacion; Hospital JM Morales Meseguer; University of Murcia; Murcia Spain
| | - José Navarro-Fernández
- Centro Regional de Hemodonacion; Hospital JM Morales Meseguer; University of Murcia; Murcia Spain
| | - Constantino Martínez
- Centro Regional de Hemodonacion; Hospital JM Morales Meseguer; University of Murcia; Murcia Spain
| | - Jose L. Fuster
- Hospital Universitario Virgen de la Arrixaca; Murcia Spain
| | - Jose M. Couselo
- Complexo Hospitalario Universitario de Santiago de Compostela; Santiago de Compostela Spain
| | - Francisco J. Ortuño
- Centro Regional de Hemodonacion; Hospital JM Morales Meseguer; University of Murcia; Murcia Spain
| | - Vicente Vicente
- Centro Regional de Hemodonacion; Hospital JM Morales Meseguer; University of Murcia; Murcia Spain
| | - Jose Rivera
- Centro Regional de Hemodonacion; Hospital JM Morales Meseguer; University of Murcia; Murcia Spain
| | - Maria L. Lozano
- Centro Regional de Hemodonacion; Hospital JM Morales Meseguer; University of Murcia; Murcia Spain
| |
Collapse
|
5
|
Liu Z, Li B. Spatiotemporal expression profile of a putative β propeller WDR72 in laying hens. Mol Biol Rep 2013; 40:5247-53. [PMID: 23666062 DOI: 10.1007/s11033-013-2624-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 04/30/2013] [Indexed: 11/25/2022]
Abstract
The purpose of this study is to characterize the expression profile of a novel gene WDR72 in laying hens. Sixty-week old Hy-line Brown layers with similar laying sequence, egg weight, and shell strength, were selected and divided into 5 groups. The oviduct segments, such as magnum, white isthmus, and uterus, were sampled from each group of hens which were killed at 3 h post-oviposition (3 h P.O.), 4.15-4.5 h P.O., 8.5-9 h P.O., 12 h P.O. and 18 h P.O., respectively. To the 8.5-9 h P.O. hens, additional organs were also sampled besides oviduct tissues. Moreover, another group of hens with weak shell strength were selected and their oviduct segments were sampled at 12 h P.O. Then the expression profile of WDR72 was analyzed using real-time quantitative RT-PCR. The results showed as follows. (1) WDR72 transcripts specifically distributed in parts of organs investigated. At 8.5-9 h P.O., WDR72 appeared to be much more abundantly expressed in hens' oviduct sections, then followed in turn by brain, kidney, lung, glandular stomach and spleen. However, there were almost no WDR72 transcripts expressed in pectoral muscle, liver, heart and jejunum. (2) During the process of an "egg" passing through an oviduct, the expression of WDR72 in the magnum was greatly superior to that in the other two oviduct segments at 3 h P.O., 8.5-9 h P.O., and 12 h P.O.; while it was white isthmus in which WDR72 transcript levels were the highest at 4.15-4.5 h P.O. and 18 h P.O. (3) To any oviduct segment, not only uterus but also magnum and white isthmus, the expression of WDR72 in which was significantly up-regulated at the stages of active calcification. (4) WDR72 transcript levels in any oviduct segments of strong-shell hens were significantly higher than that of weak-shell layers (P < 0.01), which arose the possibility that WDR72 was positively associated with chicken eggshell strength. In conclusion, the expression profile of WDR72 gene in laying hens has been characterized, which would facilitate to further probe into its functions.
Collapse
Affiliation(s)
- Zhangguo Liu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, 311300, Zhejiang, China.
| | | |
Collapse
|
6
|
Wu M, Eriksson LA, Strid Å. Theoretical prediction of the protein–protein interaction between Arabidopsis thaliana COP1 and UVR8. Theor Chem Acc 2013. [DOI: 10.1007/s00214-013-1371-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
El-Sayed W, Parry DA, Shore RC, Ahmed M, Jafri H, Rashid Y, Al-Bahlani S, Al Harasi S, Kirkham J, Inglehearn CF, Mighell AJ. Mutations in the beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta. Am J Hum Genet 2009; 85:699-705. [PMID: 19853237 PMCID: PMC2775821 DOI: 10.1016/j.ajhg.2009.09.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/22/2009] [Accepted: 09/25/2009] [Indexed: 11/26/2022] Open
Abstract
Healthy dental enamel is the hardest and most highly mineralized human tissue. Though acellular, nonvital, and without capacity for turnover or repair, it can nevertheless last a lifetime. Amelogenesis imperfecta (AI) is a collective term for failure of normal enamel development, covering diverse clinical phenotypes that typically show Mendelian inheritance patterns. One subset, known as hypomaturation AI, is characterised by near-normal volumes of organic enamel matrix but with weak, creamy-brown opaque enamel that fails prematurely after tooth eruption. Mutations in genes critical to enamel matrix formation have been documented, but current understanding of other key events in enamel biomineralization is limited. We investigated autosomal-recessive hypomaturation AI in a consanguineous Pakistani family. A whole-genome SNP autozygosity screen identified a locus on chromosome 15q21.3. Sequencing candidate genes revealed a point mutation in the poorly characterized WDR72 gene. Screening of WDR72 in a panel of nine additional hypomaturation AI families revealed the same mutation in a second, apparently unrelated, Pakistani family and two further nonsense mutations in Omani families. Immunohistochemistry confirmed intracellular localization in maturation-stage ameloblasts. WDR72 function is unknown, but as a putative β propeller is expected to be a scaffold for protein-protein interactions. The nearest homolog, WDR7, is involved in vesicle mobilization and Ca2+-dependent exocytosis at synapses. Vesicle trafficking is important in maturation-stage ameloblasts with respect to secretion into immature enamel and removal of cleaved enamel matrix proteins via endocytosis. This raises the intriguing possibility that WDR72 is critical to ameloblast vesicle turnover during enamel maturation.
Collapse
|
8
|
Evaluation of the impact of functional diversification on Poaceae, Brassicaceae, Fabaceae, and Pinaceae alcohol dehydrogenase enzymes. J Mol Model 2009; 16:919-28. [DOI: 10.1007/s00894-009-0576-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
|