1
|
Krajnak K, Farcas M, Richardson D, Hammer MA, Waugh S, McKinney W, Knepp A, Jackson M, Burns D, LeBouf R, Matheson J, Thomas T, Qian Y. Exposure to emissions generated by 3-dimensional printing with polycarbonate: effects on peripheral vascular function, cardiac vascular morphology and expression of markers of oxidative stress in male rat cardiac tissue. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:541-559. [PMID: 38682597 PMCID: PMC11625379 DOI: 10.1080/15287394.2024.2346938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Three-dimensional (3D) printing with polycarbonate (PC) plastic occurs in manufacturing settings, homes, and schools. Emissions generated during printing with PC stock and bisphenol-A (BPA), an endocrine disrupter in PC, may induce adverse health effects. Inhalation of 3D printer emissions, and changes in endocrine function may lead to cardiovascular dysfunction. The goal of this study was to determine whether there were any changes in markers of peripheral or cardiovascular dysfunction in animals exposed to PC-emissions. Male Sprague Dawley rats were exposed to PC-emissions generated by 3D printing for 1, 4, 8, 15 or 30 d. Exposure induced a reduction in the expression of the antioxidant catalase (Cat) and endothelial nitric oxide synthase (eNos). Endothelin and hypoxia-induced factor 1α transcripts increased after 30 d. Alterations in transcription were associated with elevations in immunostaining for estrogen and androgen receptors, nitrotyrosine, and vascular endothelial growth factor in cardiac arteries of PC-emission exposed animals. There was also a reduction eNOS immunostaining in cardiac arteries from rats exposed to PC-emissions. Histological analyses of heart sections revealed that exposure to PC-emissions resulted in vasoconstriction of cardiac arteries and thickening of the vascular smooth muscle wall, suggesting there was a prolonged vasoconstriction. These findings are consistent with studies showing that inhalation 3D-printer emissions affect cardiovascular function. Although BPA levels in animals were relatively low, exposure-induced changes in immunostaining for estrogen and androgen receptors in cardiac arteries suggest that changes in the action of steroid hormones may have contributed to the alterations in morphology and markers of cardiac function.
Collapse
Affiliation(s)
- Kristine Krajnak
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mariana Farcas
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mary Anne Hammer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey Waugh
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Alycia Knepp
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Dru Burns
- Respiratory Health Division, Morgantown, WV, USA
| | - Ryan LeBouf
- Respiratory Health Division, Morgantown, WV, USA
| | | | - Treye Thomas
- Consumer Product Safety Commission, Rockville, MD, USA
| | - Yong Qian
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
2
|
Krajnak K, Kan H, Thompson JA, McKinney W, Waugh S, South T, Burns D, Lebouf R, Cumpston J, Boots T, Fedan JS. Biological effects of diesel exhaust inhalation. III cardiovascular function. Inhal Toxicol 2024; 36:189-204. [PMID: 38466202 PMCID: PMC11099779 DOI: 10.1080/08958378.2024.2327364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Inhalation of diesel exhaust (DE) has been shown to be an occupational hazard in the transportation, mining, and gas and oil industries. DE also contributes to air pollution, and therefore, is a health hazard to the general public. Because of its effects on human health, changes have been made to diesel engines to reduce both the amounts of particulate matter and volatile fumes they generate. The goal of the current study was to examine the effects of inhalation of diesel exhaust. MATERIALS AND METHODS The study presented here specifically examines the effects of exposure to 0.2 and 1.0 mg/m3 DE or filtered air (6h/d for 4 d) on measures of peripheral and cardio-vascular function, and biomarkers of heart and kidney dysfunction in male rats. A Tier 2 engine used in oil and gas fracking operations was used to generate the diesel exhaust. RESULTS Exposure to 0.2 mg/m3 DE resulted in an increase in blood pressure 1d following the last exposure, and increases in dobutamine-induced cardiac output and stroke volume 1 and 27d after exposure. Changes in peripheral vascular responses to norepinephrine and acetylcholine were minimal as were changes in transcript expression in the heart and kidney. Exposure to 1.0 mg/m3 DE did not result in major changes in blood pressure, measures of cardiac function, peripheral vascular function or transcript expression. DISCUSSION AND CONCLUSIONS Based on the results of this study, we suggest that exposure to DE generated by a Tier 2 compliant diesel engine generates acute effects on biomarkers indicative of cardiovascular dysfunction. Recovery occurs quickly with most measures of vascular/cardiovascular function returning to baseline levels by 7d following exposure.
Collapse
Affiliation(s)
- Kristine Krajnak
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Hong Kan
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Janet A. Thompson
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey Waugh
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Tim South
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Dru Burns
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ryan Lebouf
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jared Cumpston
- Animal Facilities, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Theresa Boots
- Risk Evaluation Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jeffrey S. Fedan
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
3
|
Krajnak K, Farcas M, McKinney W, Waugh S, Mandler K, Knepp A, Jackson M, Richardson D, Hammer M, Matheson J, Thomas T, Qian Y. Inhalation of polycarbonate emissions generated during 3D printing processes affects neuroendocrine function in male rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:575-596. [PMID: 37350301 PMCID: PMC10527863 DOI: 10.1080/15287394.2023.2226198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Three-dimensional (3D) printing of manufactured goods has increased in the last 10 years. The increased use of this technology has resulted in questions regarding the influence of inhaling emissions generated during printing. The goal of this study was to determine if inhalation of particulate and/or toxic chemicals generated during printing with polycarbonate (PC) plastic affected the neuroendocrine system. Male rats were exposed to 3D-printer emissions (592 µg particulate/m3 air) or filtered air for 4 h/day (d), 4 days/week and total exposures lengths were 1, 4, 8, 15 or 30 days. The effects of these exposures on hormone concentrations, and markers of function and/or injury in the olfactory bulb, hypothalamus and testes were measured after 1, 8 and 30 days exposure. Thirty days of exposure to 3D printer emissions resulted in reductions in thyroid stimulating hormone, follicle stimulating hormone and prolactin. These changes were accompanied by (1) elevation in markers of cell injury; (2) reductions in active mitochondria in the olfactory bulb, diminished gonadotropin releasing hormone cells and fibers as well as less tyrosine hydroxylase immunolabeled fibers in the arcuate nucleus; and (3) decrease in spermatogonium. Polycarbonate plastics may contain bisphenol A, and the effects of exposure to these 3D printer-generated emissions on neuroendocrine function are similar to those noted following exposure to bisphenol A.
Collapse
Affiliation(s)
- Kristine Krajnak
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mariana Farcas
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey Waugh
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kyle Mandler
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Alycia Knepp
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Jackson
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Histopathology Core, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - MaryAnne Hammer
- Histopathology Core, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Joanna Matheson
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Treye Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Yong Qian
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
4
|
Denic-Roberts H, Rowley N, Haigney MC, Christenbury K, Barrett J, Thomas DL, Engel LS, Rusiecki JA. Acute and longer-term cardiovascular conditions in the Deepwater Horizon Oil Spill Coast Guard Cohort. ENVIRONMENT INTERNATIONAL 2022; 158:106937. [PMID: 34688052 PMCID: PMC8688193 DOI: 10.1016/j.envint.2021.106937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 05/31/2023]
Abstract
INTRODUCTION In 2010, the U.S. Coast Guard (USCG) led a clean-up response to the Deepwater Horizon (DWH) oil spill. Human studies evaluating acute and longer-term cardiovascular conditions associated with oil spill-related exposures are sparse. Thus, we aimed to investigate prevalent and incident cardiovascular symptoms/conditions in the DHW Oil Spill Coast Guard Cohort. METHODS Self-reported oil spill exposures and cardiovascular symptoms were ascertained from post-deployment surveys (n = 4,885). For all active-duty cohort members (n = 45,193), prospective cardiovascular outcomes were classified via International Classification of Diseases, 9th Edition from military health encounter records up to 5.5 years post-DWH. We used log-binomial regression to calculate adjusted prevalence ratios (aPRs) and 95% confidence intervals (CIs) in the cross-sectional analyses and Cox Proportional Hazards regression to calculate adjusted hazard ratios (aHR) and 95% CIs for incident cardiovascular diagnoses during 2010-2015 and stratifying by earlier (2010-2012) and later (2013-2015) time periods. RESULTS Prevalence of chest pain was associated with increasing levels of crude oil exposure via inhalation (aPRhigh vs. none = 2.00, 95% CI = 1.16-3.42, p-trend = 0.03) and direct skin contact (aPRhigh vs. none = 2.72, 95% CI = 1.30-5.16, p-trend = 0.03). Similar associations were observed for sudden heartbeat changes and for being in the vicinity of burning oil exposure. In prospective analyses, responders (vs. non-responders) had an elevated risk for mitral valve disorders during 2013-2015 (aHR = 2.12, 95% CI = 1.15-3.90). Responders reporting ever (vs. never) crude oil inhalation exposure were at increased risk for essential hypertension, particularly benign essential hypertension during 2010-2012 (aHR = 2.00, 95% CI = 1.08-3.69). Responders with crude oil inhalation exposure also had an elevated risk for palpitations during 2013-2015 (aHR = 2.54, 95% CI = 1.36-4.74). Cardiovascular symptoms/conditions aPR and aHR estimates were generally stronger among responders reporting exposure to both crude oil and oil dispersants than among those reporting neither. CONCLUSIONS In this large study of the DWH oil spill USCG responders, self-reported spill clean-up exposures were associated with acute and longer-term cardiovascular symptoms/conditions.
Collapse
Affiliation(s)
- Hristina Denic-Roberts
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Oak Ridge Institute for Science and Education, MD, USA
| | - Nicole Rowley
- Department of Laboratory Animal Resources, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mark C Haigney
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kate Christenbury
- Social & Scientific Systems, Inc., A DLH Holdings Corp Company ("DLH"), Durham, NC, USA
| | - John Barrett
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Dana L Thomas
- United States Coast Guard Headquarters, Directorate of Health, Safety, and Work Life, Washington, D.C., USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
5
|
Sager TM, Umbright CM, Mustafa GM, Yanamala N, Leonard HD, McKinney WG, Kashon ML, Joseph P. Tobacco Smoke Exposure Exacerbated Crystalline Silica-Induced Lung Toxicity in Rats. Toxicol Sci 2020; 178:375-390. [PMID: 32976597 PMCID: PMC7825013 DOI: 10.1093/toxsci/kfaa146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Smoking may modify the lung response to silica exposure including cancer and silicosis. Nevertheless, the precise role of exposure to tobacco smoke (TS) on the lung response to crystalline silica (CS) exposure and the underlying mechanisms need further clarification. The objectives of the present study were to determine the role of TS on lung response to CS exposure and the underlying mechanism(s). Male Fischer 344 rats were exposed by inhalation to air, CS (15 mg/m3, 6 h/day, 5 days), TS (80 mg/m3, 3 h/day, twice weekly, 6 months), or CS (15 mg/m3, 6 h/day, 5 days) followed by TS (80 mg/m3, 3 h/day, twice weekly, 6 months). The rats were euthanized 6 months and 3 weeks following initiation of the first exposure and the lung response was assessed. Silica exposure resulted in significant lung toxicity as evidenced by lung histological changes, enhanced neutrophil infiltration, increased lactate dehydrogenase levels, enhanced oxidant production, and increased cytokine levels. The TS exposure alone had only a minimal effect on these toxicity parameters. However, the combined exposure to TS and CS exacerbated the lung response, compared with TS or CS exposure alone. Global gene expression changes in the lungs correlated with the lung toxicity severity. Bioinformatic analysis of the gene expression data demonstrated significant enrichment in functions, pathways, and networks relevant to the response to CS exposure which correlated with the lung toxicity detected. Collectively our data demonstrated an exacerbation of CS-induced lung toxicity by TS exposure and the molecular mechanisms underlying the exacerbated toxicity.
Collapse
Affiliation(s)
- Tina M Sager
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Christina M Umbright
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Gul Mehnaz Mustafa
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Naveena Yanamala
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Howard D Leonard
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Walter G McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| | - Pius Joseph
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia 26505
| |
Collapse
|
6
|
Krajnak K, Waugh S, Stefaniak A, Schwegler-Berry D, Roach K, Barger M, Roberts J. Exposure to graphene nanoparticles induces changes in measures of vascular/renal function in a load and form-dependent manner in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:711-726. [PMID: 31370764 DOI: 10.1080/15287394.2019.1645772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphenes isolated from crystalline graphite are used in several industries. Employees working in the production of graphenes may be at risk of developing respiratory problems attributed to inhalation or contact with particulate matter (PM). However, graphene nanoparticles might also enter the circulation and accumulate in other organs. The aim of this study was to examine how different forms of graphene affect peripheral vascular functions, generation of reactive oxygen species (ROS) and changes in gene expression that may be indicative of cardiovascular and/or renal dysfunction. In the first investigation, different doses of graphene nanoplatelets were administered to mice via oropharyngeal aspiration. These effects were compared to those of dispersion medium (DM) and carbon black (CB). Gene expression alterations were observed in the heart for CB and graphene; however, only CB produced changes in peripheral vascular function. In the second study, oxidized forms of graphene were administered. Both oxidized forms increased the sensitivity of peripheral blood vessels to adrenoreceptor-mediated vasoconstriction and induced changes in ROS levels in the heart. Based upon the results of these investigations, exposure to graphene nanoparticles produced physiological and alterations in ROS and gene expression that may lead to cardiovascular dysfunction. Evidence indicates that the effects of these particles may be dependent upon dose and graphene form to which an individual may be exposed to.
Collapse
Affiliation(s)
- K Krajnak
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - S Waugh
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Ab Stefaniak
- b Respiratory Health Division, West Virginia University , Morgantown , WV , USA
| | - D Schwegler-Berry
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | | | - M Barger
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Jr Roberts
- a Health Effects Laboratory Division, National Institute for Occupational Safety and Health , Morgantown , WV , USA
| |
Collapse
|
7
|
Lichtveld M, Sherchan S, Gam KB, Kwok RK, Mundorf C, Shankar A, Soares L. The Deepwater Horizon Oil Spill Through the Lens of Human Health and the Ecosystem. Curr Environ Health Rep 2018; 3:370-378. [PMID: 27722880 DOI: 10.1007/s40572-016-0119-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This review examines current research ascertaining the impact of the Deepwater Horizon oil spill on human health and ecosystems. Driven by the need to strategically focus research funding, the authors also assess the implications of those findings and promote a transdisciplinary research agenda addressing critical gaps.Epidemiologic studies conducted in workers and vulnerable communities in the spill's aftermath showed that non-chemical stressors affect resilience. Ecosystem-wise salt marsh species showed variability in structural and functional changes, attributed to species-specific tolerance, oil exposure, and belowground plant organs damage.Lacking baseline exposure assessment data hampers assessing the impact of chemical stressors. Research priorities include leveraging existing women/child dyads and worker cohorts to advance exposure characterization and counter early adverse effects in most vulnerable populations. Key policy gaps include mandated just-in-time emergency resources to ascertain immediate post-event exposures and contemporary legislation addressing human and ecosystem health in an integrated rather than silo fashion.
Collapse
Affiliation(s)
- Maureen Lichtveld
- Department of Global Environmental Health Sciences, Tulane School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA.
| | - Samendra Sherchan
- Department of Global Environmental Health Sciences, Tulane School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
| | - Kaitlyn B Gam
- Department of Epidemiology, National Institute of Environmental Health Sciences, P.O. Box 12233, Mail Drop A3-05, Research Triangle Park, NC, 27709, USA.,Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Richard K Kwok
- Department of Epidemiology, National Institute of Environmental Health Sciences, P.O. Box 12233, Mail Drop A3-05, Research Triangle Park, NC, 27709, USA
| | | | - Arti Shankar
- Department of Biostatistics and Bioinformatics, Tulane School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2000, New Orleans, LA, 70112, USA
| | - Lissa Soares
- Department of Global Environmental Health Sciences, Tulane School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
| |
Collapse
|