1
|
Comparative Transcriptomics and Proteomics of Cancer Cell Lines Cultivated by Physiological and Commercial Media. Biomolecules 2022; 12:biom12111575. [DOI: 10.3390/biom12111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Aiming to reduce the gap between in vitro and in vivo environment, a complex culture medium, Plasmax, was introduced recently, which includes nutrients and metabolites with concentrations normally found in human plasma. Herein, to study the influence of this medium on cellular behaviors, we utilized Plasmax to cultivate two cancer cell lines, including one breast cancer cell line, MDA-MB-231BR, and one brain cancer cell line, CRL-1620. Cancer cells were harvested and prepared for transcriptomics and proteomics analyses to assess the discrepancies caused by the different nutritional environments of Plasmax and two commercial media: DMEM, and EMEM. Total RNAs of cells were extracted using mammalian total RNA extract kits and analyzed by next-generation RNA sequencing; proteomics analyses were performed using LC-MS/MS. Gene oncology and pathway analysis were employed to study the affected functions. The cellular invasion and cell death were inhibited in MDA-MB-231BR cell line when cultured in Plasmax compared to DMEM and EMEM, whereas the invasion, migration and protein synthesis of CRL-1620 cell line were activated in Plasmax in relative to both commercial media. The expression changes of some proteins were more significant compared to their corresponding transcripts, indicating that Plasmax has more influence upon regulatory processes of proteins after translation. This work provides complementary information to the original study of Plasmax, aiming to facilitate the selection of appropriate media for in vitro cancer cell studies.
Collapse
|
2
|
Vergallo C, Ahmadi M, Mobasheri H, Dini L. Impact of inhomogeneous static magnetic field (31.7-232.0 mT) exposure on human neuroblastoma SH-SY5Y cells during cisplatin administration. PLoS One 2014; 9:e113530. [PMID: 25423171 PMCID: PMC4244110 DOI: 10.1371/journal.pone.0113530] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 10/08/2014] [Indexed: 02/03/2023] Open
Abstract
Beneficial or adverse effects of Static Magnetic Fields (SMFs) are a large concern for the scientific community. In particular, the effect of SMF exposure during anticancer therapies still needs to be fully elucidated. Here, we evaluate the effects of SMF at induction levels that cisPt-treated cancer patients experience during the imaging process conducted in Low field (200-500 mT), Open field (300-700 mT) and/or inhomogeneous High field (1.5-3 T) Magnetic Resonance Imaging (MRI) machines. Human adrenergic neuroblastoma SH-SY5Y cells treated with 0.1 µM cisPt (i.e. the lowest concentration capable of inducing apoptosis) were exposed to SMF and their response was studied in vitro. Exposure of 0.1 µM cisPt-treated cells to SMF for 2 h decreased cell viability (30%) and caused overexpression of the apoptosis-related cleaved caspase-3 protein (46%). Furthermore, increase in ROS (Reactive Oxygen Species) production (23%) and reduction in the number of mitochondria vs controls were seen. The sole exposure of SMF for up to 24 h had no effect on cell viability but increased ROS production and modified cellular shape. On the other hand, the toxicity of cisPt was significantly prevented during 24 h exposure to SMF as shown by the levels of cell viability, cleaved caspase-3 and ROS production. In conclusion, due to the cytoprotective effect of 31.7-232.0 mT SMF on low-cisPt-concentration-treated SH-SY5Y cells, our data suggest that exposure to various sources of SMF in cancer patients under a cisPt regimen should be strictly controlled.
Collapse
Affiliation(s)
- Cristian Vergallo
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Meysam Ahmadi
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, 13145-1384 Tehran, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, 76175-113 Kerman, Iran
| | - Hamid Mobasheri
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, 13145-1384 Tehran, Iran
- Biomaterials Research Center (BRC), University of Tehran, 13145-1384 Tehran, Iran
| | - Luciana Dini
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
3
|
Gamberi T, Massai L, Magherini F, Landini I, Fiaschi T, Scaletti F, Gabbiani C, Bianchi L, Bini L, Nobili S, Perrone G, Mini E, Messori L, Modesti A. Proteomic analysis of A2780/S ovarian cancer cell response to the cytotoxic organogold(III) compound Aubipy(c). J Proteomics 2014; 103:103-20. [PMID: 24705091 DOI: 10.1016/j.jprot.2014.03.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED Aubipyc is an organogold(III) compound endowed with encouraging anti-proliferative properties in vitro that is being evaluated pre-clinically as a prospective anticancer agent. A classical proteomic approach is exploited here to elucidate the mechanisms of its biological actions in A2780 human ovarian cancer cells. Based on 2-D gel electrophoresis separation and subsequent mass spectrometry identification, a considerable number of differentially expressed proteins were highlighted in A2780 cancer cells treated with Aubipyc. Bioinformatic analysis of the groups of up-regulated and down-regulated proteins pointed out that Aubipyc primarily perturbs mitochondrial processes and the glycolytic pathway. Notably, some major alterations in the glycolytic pathway were validated through Western blot and metabolic investigations. BIOLOGICAL SIGNIFICANCE This is the first proteomic analysis regarding Aubipyc cytotoxicity in A2780/S ovarian cancer cell line. Aubipyc is a promising gold(III) compound which manifests an appreciable cytotoxicity toward the cell line A2780, being able to overcome resistance to platinum. The proteomic study revealed for Aubipyc different cellular alterations with respect to cisplatin as well as to other gold compound such as auranofin. Remarkably, the bioinformatic analysis of proteomic data pointed out that Aubipyc treatment affected, directly or indirectly, several glycolytic enzymes. These data suggest a new mechanism of action for this gold drug and might have an impact on the use of gold-based drug in cancer treatment.
Collapse
Affiliation(s)
- Tania Gamberi
- Department of Clinical and Preclinical Biomedical Sciences, University of Florence, Italy
| | - Lara Massai
- Department of Chemistry, University of Florence, Italy
| | - Francesca Magherini
- Department of Clinical and Preclinical Biomedical Sciences, University of Florence, Italy
| | - Ida Landini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Tania Fiaschi
- Department of Clinical and Preclinical Biomedical Sciences, University of Florence, Italy
| | | | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Italy
| | - Laura Bianchi
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Italy
| | - Luca Bini
- Functional Proteomic Section, Department of Life Sciences, University of Siena, Italy
| | - Stefania Nobili
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Gabriele Perrone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy
| | - Luigi Messori
- Department of Chemistry, University of Florence, Italy.
| | - Alessandra Modesti
- Department of Clinical and Preclinical Biomedical Sciences, University of Florence, Italy.
| |
Collapse
|
4
|
Marlin JW, Chang YWE, Ober M, Handy A, Xu W, Jakobi R. Functional PAK-2 knockout and replacement with a caspase cleavage-deficient mutant in mice reveals differential requirements of full-length PAK-2 and caspase-activated PAK-2p34. Mamm Genome 2011; 22:306-17. [PMID: 21499899 DOI: 10.1007/s00335-011-9326-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 03/23/2011] [Indexed: 11/26/2022]
Abstract
p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.
Collapse
Affiliation(s)
- Jerry W Marlin
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO 64106, USA
| | | | | | | | | | | |
Collapse
|