1
|
Rinaldi A, Balietti M, Principi E, De Luca M, De Felice E, Narcisi FM, Vilardo L, Rosito M, Piacentini R, D'Alessandro G, D'Agnano I, Maggi L, Conti F, Limatola C, Catalano M. BV2-derived extracellular vesicles modulate microglia inflammatory profile, neuronal plasticity, and behavioural performances in late adult mice. Brain Behav Immun 2024; 122:58-74. [PMID: 39128568 DOI: 10.1016/j.bbi.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND During aging, both the brain and the immune system undergo a progressive impairment of physiological functions. Microglia, the immunocompetent cells of the central nervous system, shift towards a chronic mild inflammatory state that impacts brain homeostasis. Extracellular vesicles (EVs) released by microglia transport packages of molecular information that mirror the inflammatory status of donor cells and modulate the inflammatory phenotype of recipient microglia and other cell types. RESULTS We demonstrated that intranasal administration of EVs derived from microglial-like BV2 cells to late adult mice (16-20 months of age) shifts microglia toward a "juvenile" morphology affecting their inflammatory profile. Mice treated with BV2-derived EVs have a reduction of anxiety-like behavior and an increased spatial learning, with sex-dependent differences. Further, BV2-derived EVs increased neuronal plasticity both in male and female mice. These findings suggest the involvement of microglial cells in vesicles-mediated anti-aging effect. CONCLUSIONS Our data indicate that BV2-derived EVs could represent a resource to slow down age-dependent inflammation in the mouse brain.
Collapse
Affiliation(s)
- Arianna Rinaldi
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Marta Balietti
- IRCCS INRCA, Center for Neurobiology of Aging, Via Birarelli 8, Ancona 60121, Italy
| | - Elisa Principi
- Università Politecnica delle Marche, Department of Experimental and Clinical Medicine, Via Tronto 10/a, Ancona 60126, Italy
| | | | - Eleonora De Felice
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Laura Vilardo
- Institute of Biomedical Technologies, CNR, 20054 Segrate, Italy
| | - Maria Rosito
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; Center for Life Nanoscience & Neuroscience Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy; IRCCS Fondazione Policlinico Universitario A. Gemelli, Largo A. Gemelli 1, Roma, Italy
| | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Igea D'Agnano
- Institute of Biomedical Technologies, CNR, 20054 Segrate, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Fiorenzo Conti
- Università Politecnica delle Marche, Department of Experimental and Clinical Medicine, Via Tronto 10/a, Ancona 60126, Italy; IRCCS INRCA, Center for Neurobiology of Aging, Via Birarelli 8, Ancona 60121, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia, Rome, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|
2
|
Tian T, Li H, Zhang S, Yang M. Characterization of sensory and motor dysfunction and morphological alterations in late stages of type 2 diabetic mice. Front Endocrinol (Lausanne) 2024; 15:1374689. [PMID: 38532899 PMCID: PMC10964478 DOI: 10.3389/fendo.2024.1374689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Diabetic neuropathy is the most common complication of diabetes and lacks effective treatments. Although sensory dysfunction during the early stages of diabetes has been extensively studied in various animal models, the functional and morphological alterations in sensory and motor systems during late stages of diabetes remain largely unexplored. In the current work, we examined the influence of diabetes on sensory and motor function as well as morphological changes in late stages of diabetes. The obese diabetic Leprdb/db mice (db/db) were used for behavioral assessments and subsequent morphological examinations. The db/db mice exhibited severe sensory and motor behavioral defects at the age of 32 weeks, including significantly higher mechanical withdrawal threshold and thermal latency of hindpaws compared with age-matched nondiabetic control animals. The impaired response to noxious stimuli was mainly associated with the remarkable loss of epidermal sensory fibers, particularly CGRP-positive nociceptive fibers. Unexpectedly, the area of CGRP-positive terminals in the spinal dorsal horn was dramatically increased in diabetic mice, which was presumably associated with microglial activation. In addition, the db/db mice showed significantly more foot slips and took longer time during the beam-walking examination compared with controls. Meanwhile, the running duration in the rotarod test was markedly reduced in db/db mice. The observed sensorimotor deficits and motor dysfunction were largely attributed to abnormal sensory feedback and muscle atrophy as well as attenuated neuromuscular transmission in aged diabetic mice. Morphological analysis of neuromuscular junctions (NMJs) demonstrated partial denervation of NMJs and obvious fragmentation of acetylcholine receptors (AChRs). Intrafusal muscle atrophy and abnormal muscle spindle innervation were also detected in db/db mice. Additionally, the number of VGLUT1-positive excitatory boutons on motor neurons was profoundly increased in aged diabetic mice as compared to controls. Nevertheless, inhibitory synaptic inputs onto motor neurons were similar between the two groups. This excitation-inhibition imbalance in synaptic transmission might be implicated in the disturbed locomotion. Collectively, these results suggest that severe sensory and motor deficits are present in late stages of diabetes. This study contributes to our understanding of mechanisms underlying neurological dysfunction during diabetes progression and helps to identify novel therapeutic interventions for patients with diabetic neuropathy.
Collapse
Affiliation(s)
- Ting Tian
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haofeng Li
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Karavis MY, Siafaka I, Vadalouca A, Georgoudis G. Role of Microglia in Neuropathic Pain. Cureus 2023; 15:e43555. [PMID: 37719474 PMCID: PMC10503876 DOI: 10.7759/cureus.43555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Microglial cells are specialized macrophage cells of the central nervous system responsible for the innate immunity of the spinal cord and the brain. They protect the brain and spinal cord from invaders, microbes, demyelination, trauma and remove defective cells and neurons. For immune protection, microglial cells possess a significant number of receptors and chemical mediators that allow them to communicate rapidly and specifically with all cells of the nervous tissue. The contribution of microglia in neuropathic pain challenges conventional concepts toward neurons being the only structure responsible for the pathophysiological changes that drive neuropathic pain. The present study is a narrative review focusing on the literature concerning the complex interaction between neurons and microglia in the development of neuropathic pain. Injury in the peripheral or central nervous system may result in maladaptive changes in neurons and microglial cells. In neuropathic pain, microglial cells have an important role in initiating and maintenance of pain and inflammation. The interaction between neural and microglial cells has been proven extremely crucial for chronic pain. The study of individual mechanisms at the level of the spinal cord and the brain is an interesting and groundbreaking research challenge. Elucidation of the mechanisms by which neurons and immune cells interact, could constitute microglial cells a new therapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Miltiades Y Karavis
- Musculoskeletal Physiotherapy Research Laboratory, Department of Physiotherapy, University of West Attica, Athens, GRC
| | - Ioanna Siafaka
- 1st Department of Anesthesiology, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - Athina Vadalouca
- 1st Department of Anesthesiology, National and Kapodistrian University of Athens School of Medicine, Athens, GRC
| | - George Georgoudis
- Musculoskeletal Physiotherapy Research Laboratory, Department of Physiotherapy, University of West Attica, Athens, GRC
| |
Collapse
|
4
|
Brandi E, Torres-Garcia L, Svanbergsson A, Haikal C, Liu D, Li W, Li JY. Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure. Front Aging Neurosci 2022; 14:910988. [PMID: 36092814 PMCID: PMC9459169 DOI: 10.3389/fnagi.2022.910988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Microglia cells are the macrophage population within the central nervous system, which acts as the first line of the immune defense. These cells present a high level of heterogeneity among different brain regions regarding morphology, cell density, transcriptomes, and expression of different inflammatory mediators. This region-specific heterogeneity may lead to different neuroinflammatory responses, influencing the regional involvement in several neurodegenerative diseases. In this study, we aimed to evaluate microglial response in 16 brain regions. We compared different aspects of the microglial response, such as the extension of their morphological changes, sensitivity, and ability to convert an acute inflammatory response to a chronic one. Then, we investigated the synaptic alterations followed by acute and chronic inflammation in substantia nigra. Moreover, we estimated the effect of partial ablation of fractalkine CX3C receptor 1 (CX3CR1) on microglial response. In the end, we briefly investigated astrocytic heterogeneity and activation. To evaluate microglial response in different brain regions and under the same stimulus, we induced a systemic inflammatory reaction through a single intraperitoneal (i.p.) injection of lipopolysaccharides (LPS). We performed our study using C57BL6 and CX3CR1+/GFP mice to investigate microglial response in different regions and the impact of CX3CR1 partial ablation. We conducted a topographic study quantifying microglia alterations in 16 brain regions through immunohistochemical examination and computational image analysis. Assessing Iba1-immunopositive profiles and the density of the microglia cells, we have observed significant differences in region-specific responses of microglia populations in all parameters considered. Our results underline the peculiar microglial inflammation in the substantia nigra pars reticulata (SNpr). Here and in concomitance with the acute inflammatory response, we observed a transient decrease of dopaminergic dendrites and an alteration of the striato-nigral projections. Additionally, we found a significant decrease in microglia response and the absence of chronic inflammation in CX3CR1+/GFP mice compared to the wild-type ones, suggesting the CX3C axis as a possible pharmacological target against neuroinflammation induced by an increase of systemic tumor necrosis factor-alpha (TNFα) or/and LPS. Finally, we investigated astrocytic heterogeneity in this model. We observed different distribution and morphology of GFAP-positive astrocytes, a heterogeneous response under inflammatory conditions, and a decrease in their activation in CX3CR1 partially ablated mice compared with C57BL6 mice. Altogether, our data confirm that microglia and astrocytes heterogeneity lead to a region-specific inflammatory response in presence of a systemic TNFα or/and LPS treatment.
Collapse
Affiliation(s)
- Edoardo Brandi
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Di Liu
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
- *Correspondence: Jia-Yi Li, ,
| |
Collapse
|
5
|
Higo N. Motor Cortex Plasticity During Functional Recovery Following Brain Damage. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although brain damage causes functional impairment, it is often followed by partial or total recovery of function. Recovery is believed to occur primarily because of brain plasticity. Both human and animal studies have significantly contributed to uncovering the neuronal basis of plasticity. Recent advances in brain imaging technology have enabled the investigation of plastic changes in living human brains. In addition, animal experiments have revealed detailed changes at the neural and genetic levels. In this review, plasticity in motor-related areas of the cerebral cortex, which is one of the most well-studied areas of the neocortex in terms of plasticity, is reviewed. In addition, the potential of technological interventions to enhance plasticity and promote functional recovery following brain damage is discussed. Novel neurorehabilitation technologies are expected to be established based on the emerging research on plasticity from the last several decades.
Collapse
|
6
|
Gonadal hormone trigger the dynamic microglial alterations through Traf6/TAK1 axis that correlate with depressive behaviors. J Psychiatr Res 2022; 152:128-138. [PMID: 35724494 DOI: 10.1016/j.jpsychires.2022.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/15/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
Abstract
Gonadal hormone deficiency is associated with the development of depression, but what mediates this association is unclear. To test the possibility that it reflects neuroimmune and neuroinflammatory processes, we analyzed how gonadal hormone deficiency and replacement affect microglial activation and inflammatory response during the development of depressive symptomatology in gonadectomized male mice. Testosterone level and the ratio of testosterone to estradiol in the serum and brain tissue of mice exposed to 3-35 days of chronic unpredictable stress were much lower than in control animals. Gonadal hormone sustained deficiency in gonadectomized mice and subsequent led to acute inflammation at day 7 following castration. Activating microglia in mice exposed to 7 days of castration subsequently suppressed the proliferation of microglia, such that their numbers in hippocampus and cortex were lower than the numbers in sham-operated mice after 30 days of castration. Here, we showed that gonadal hormone deficiency induces Traf6-mediated microglia activation, a type of inflammatory mediator. Microglia treated in this way for long time showed down-regulation of activation markers, abnormal morphology and depressive-like behaviors. Restoration and maintenance of a fixed ratio of testosterone to estradiol significantly suppressed microglial activation, neuronal necroptosis, dramatically inducing hippocampal neurogenesis and reducing depressive behaviors via the suppression of Traf6/TAK1 pathway. These findings suggest that activated or immunoreactive microglia contribute to gonadal hormone deficiency-induced depression, as well as testosterone and estradiol exert synergistic anti-depressant effects via suppressing microglial activaton in gonadectomized male mice, possibly through Traf6 signaling.
Collapse
|
7
|
Ahn K, Lee SJ, Mook-Jung I. White matter-associated microglia: New players in brain aging and neurodegenerative diseases. Ageing Res Rev 2022; 75:101574. [PMID: 35093614 DOI: 10.1016/j.arr.2022.101574] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
There has been growing interest in brain aging and rejuvenation. It is well known that brain aging is one of the leading causes of neurodegenerative diseases, such as Alzheimer's disease, but brain aging alone can cause cognitive decline. Microglia are thought to act as 'conductors' of white matter aging by modulating diverse glial cells and phagocytosing white matter-derived myelin debris. A recent study identified a specific subpopulation of microglia in the white matter of aged mice, termed white matter-associated microglia (WAM). Additionally, senescent microglia show impaired phagocytic function and altered lipid metabolism, which cause accumulation of lipid metabolites and eventually lead to myelin sheath degeneration. These results suggest that senescent WAM could be pivotal players in axonal loss during brain aging. The aim of this review is to assess the current state of knowledge on brain aging, with an emphasis on the roles of the white matter and microglia, and suggest potential approaches for rejuvenating the aged brain.
Collapse
Affiliation(s)
- Kyusik Ahn
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Inhee Mook-Jung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
8
|
Bayat M, Khalili A, Bayat G, Akbari S, Yousefi Nejad A, Borhani Haghighi A, Haghani M. Effects of platelet-rich plasma on the memory impairment, apoptosis, and hippocampal synaptic plasticity in a rat model of hepatic encephalopathy. Brain Behav 2022; 12:e2447. [PMID: 34855284 PMCID: PMC8785608 DOI: 10.1002/brb3.2447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 10/30/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES In the present study, we aimed to determine whether intraperitoneal injection of platelet-rich plasma (PRP) could have a neuroprotective effect on learning, memory, and synaptic plasticity impairment as well as hippocampal apoptosis in rats with hepatic encephalopathy induced by bile duct ligated (BDL). METHODS The rats were divided into four groups: the control, sham, BDL+ V (vehicle), and BDL+ PRP. The BDL rats were treated with PRP immediately after the surgery, and the injection was done every 3 days for 30 days. The passive avoidance and Morris water maze tests were used for the evaluation of learning and memory. The long-term potentiation (LTP), basal-synaptic transmission, and paired-pulse ratio, as an index for measurement of neurotransmitter release probability, were evaluated by field-potential recording. After taking a blood sample for assessment of the liver enzymes, the animals were sacrificed and their hippocampus was removed for evaluation of cleaved caspase-3 by Western blot. RESULTS Serological assessment of the liver function showed that BDL severely impaired the liver function. Also, PRP treatment could partially improve the liver dysfunction along with recovery in fear memory and spatial learning memory performance, LTP, basal-synaptic transmission, and neurotransmitter release probability. PRP-treated rats also showed a significant reduction in neuronal apoptosis in the CA1 area. CONCLUSIONS The results of this study suggest that PRP improves cognitive performance and synaptic plasticity in BDL rats via direct neuroprotective property and/or indirectly by improvement of hepatic dysfunction.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Khalili
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Bayat
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Somayeh Akbari
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Yousefi Nejad
- Faculty of Veterinary Medicine, Department of Veterinary Medicine, Islamic Azad University of Kazeroon, Shiraz, Iran
| | | | - Masoud Haghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Marques DA, Gargaglioni LH, Joseph V, Bretzner F, Bícego KC, Fournier S, Kinkead R. Impact of ovariectomy and CO 2 inhalation on microglia morphology in select brainstem and hypothalamic areas regulating breathing in female rats. Brain Res 2021; 1756:147276. [PMID: 33422531 DOI: 10.1016/j.brainres.2021.147276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 01/02/2021] [Indexed: 11/17/2022]
Abstract
The neural network that regulates breathing shows a significant sexual dimorphism. Ovarian hormones contribute to this distinction as, in rats, ovariectomy reduces the ventilatory response to CO2. Microglia are neuroimmune cells that are sensitive to neuroendocrine changes in their environment. When reacting to challenging conditions, these cells show changes in their morphology that reflect an augmented capacity for producing pro- and anti-inflammatory cytokines. Based on evidence suggesting that microglia contribute to sex-based differences in reflexive responses to hypercapnia, we hypothesized that ovariectomy and hypercapnia promote microglial reactivity in selected brain areas that regulate breathing. We used ionized calcium-binding-adapter molecule-1 (Iba1) immunolabeling to compare the density and morphology of microglia in the locus coeruleus (LC), the caudal medullary raphe, the caudal part of the nucleus of the tractus solitarius (cNTS), and the paraventricular nucleus of the hypothalamus (PVN). Tissue was obtained from SHAM (metaestrus) female rats or following ovariectomy. Rats were exposed to normocapnia or hypercapnia (5% CO2, 20 min). Ovariectomy and hypercapnia did not affect microglial density in any of the structures studied. Ovariectomy promoted a reactive phenotype in the cNTS and LC, as indicated by a larger morphological index. In these structures, hypercapnia had a relatively modest opposing effect; the medullary raphe or the PVN were not affected. We conclude that ovarian hormones attenuate microglial reactivity in CO2/H+ sensing structures. These data suggest that microglia may contribute to neurological diseases in which anomalies of respiratory control are associated with cyclic fluctuations of ovarian hormones or menopause.
Collapse
Affiliation(s)
- Danuzia A Marques
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada.
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Vincent Joseph
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Frédéric Bretzner
- Département de Psychiatrie et Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Stéphanie Fournier
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
10
|
Waltl I, Käufer C, Gerhauser I, Chhatbar C, Ghita L, Kalinke U, Löscher W. Microglia have a protective role in viral encephalitis-induced seizure development and hippocampal damage. Brain Behav Immun 2018; 74:186-204. [PMID: 30217535 PMCID: PMC7111316 DOI: 10.1016/j.bbi.2018.09.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/23/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
In the central nervous system (CNS), innate immune surveillance is mainly coordinated by microglia. These CNS resident myeloid cells are assumed to help orchestrate the immune response against infections of the brain. However, their specific role in this process and their interactions with CNS infiltrating immune cells, such as blood-borne monocytes and T cells are only incompletely understood. The recent development of PLX5622, a specific inhibitor of colony-stimulating factor 1 receptor that depletes microglia, allows studying the role of microglia in conditions of brain injury such as viral encephalitis, the most common form of brain infection. Here we used this inhibitor in a model of viral infection-induced epilepsy, in which C57BL/6 mice are infected by a picornavirus (Theiler's murine encephalomyelitis virus) and display seizures and hippocampal damage. Our results show that microglia are required early after infection to limit virus distribution and persistence, most likely by modulating T cell activation. Microglia depletion accelerated the occurrence of seizures, exacerbated hippocampal damage, and led to neurodegeneration in the spinal cord, which is normally not observed in this mouse strain. This study enhances our understanding of the role of microglia in viral encephalitis and adds to the concept of microglia-T cell crosstalk.
Collapse
Affiliation(s)
- Inken Waltl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany,Center for Systems Neuroscience, Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Germany
| | - Chintan Chhatbar
- Institute for Experimental Infection Research, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz Center for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz Center for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Center for Systems Neuroscience, Hannover, Germany,Institute for Experimental Infection Research, TWINCORE, Center for Experimental and Clinical Infection Research, a Joint Venture Between the Helmholtz Center for Infection Research, Braunschweig, and the Hannover Medical School, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
11
|
Miao H, Li R, Han C, Lu X, Zhang H. Minocycline promotes posthemorrhagic neurogenesis via M2 microglia polarization via upregulation of the TrkB/BDNF pathway in rats. J Neurophysiol 2018; 120:1307-1317. [PMID: 29790836 DOI: 10.1152/jn.00234.2018] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease worldwide with increasing mortality. The present study investigated whether minocycline was neuroprotective and induced M2 microglial polarization via upregulation of the TrkB/BDNF pathway after ICH. ICH was induced via injection of autologous blood into 150 Sprague-Dawley rats. A selective TrkB antagonist [N2-2-2-oxoazepan-3-yl amino] carbonyl phenyl benzo (b) thiophene-2-carboxamide (ANA 12)] and agonist [ N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2-oxopiperidine-3-carboxamide (HIOC)] were used to investigate the mechanism of minocycline-induced neuroprotection. Minocycline improved ICH-induced neurological deficits and reduced M1 microglia marker protein (CD68, CD16) expression as well as M2 microglial polarization (CD206 and arginase 1 protein). Minocycline administration enhanced microglia-neuron cross talk and promoted the proliferation of neuronal progenitor cells, such as DCX- and Tuj-1-positive cells, 24 h after ICH. Minocycline also increased M2 microglia-derived brain-derived neurotrophic factors (BDNF) and the upstream TrkB pathway. ANA 12 reversed the neuroprotective effects of minocycline. HIOC exhibited the same effects as minocycline and accelerated neurogenesis after ICH. This study demonstrated for the first time that minocycline promoted M2 microglia polarization via upregulation of the TrkB/BDNF pathway and promoted neurogenesis after ICH. This study contributes to our understanding of the therapeutic potential of minocycline in ICH. NEW & NOTEWORTHY The present study gives several novel points: 1) Minocycline promotes neurogenesis after intracerebral hemorrhage in rats. 2) Minocycline induces activated M1 microglia into M2 neurotrophic phenotype. 3) M2 microglia secreting BDNF remodel the damaged neurocircuit.
Collapse
Affiliation(s)
- Hongsheng Miao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Runming Li
- Department of Neurosurgery, No. 205 Hospital of People's Liberation Army of China, Jingzhou, China
| | - Cong Han
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Xiuzhen Lu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Hang Zhang
- Department of Neurosurgery, No. 205 Hospital of People's Liberation Army of China, Jingzhou, China
| |
Collapse
|
12
|
Merlo S, Spampinato SF, Beneventano M, Sortino MA. The contribution of microglia to early synaptic compensatory responses that precede β-amyloid-induced neuronal death. Sci Rep 2018; 8:7297. [PMID: 29740062 PMCID: PMC5940848 DOI: 10.1038/s41598-018-25453-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/17/2018] [Indexed: 12/31/2022] Open
Abstract
Glial-neuronal cross-talk has a critical role in the development of neurodegenerative conditions, including Alzheimer's Disease, where it affects neuronal responses to β-amyloid peptide (Aβ)-induced toxicity. We set out to identify factors regulating synaptic responses to Aβ, dissecting the specific role of glial signaling. A low concentration of aggregated Aβ42 induced selective up-regulation of mature brain-derived neurotrophic factor (BDNF) expression and release in rat organotypic hippocampal cultures as well as in cortical pure microglia. Conditioned media from resting (CMC) or Aβ42-treated (CMA) microglia were tested for their effects on synaptophysin expression in SH-SY5Y neuronal-like cells during challenge with Aβ42. Both CMC and CMA prevented Aβ-induced synaptophysin loss. In the presence of Aβ + CMA, synaptophysin was over-expressed, although it appeared partly clumped in cell bodies. Synaptophysin over-expression was not directly dependent on BDNF signaling on neuronal-like cells, but relied on autocrine BDNF action on microglia. FM1-43 labeling experiments revealed compromised synaptic vesicle recycling in Aβ42-treated neuronal-like cells, rescued by microglial conditioned medium. In these conditions, significant and prolonged neuroprotection was observed. Our results point to microglia as a target for early intervention, given its positive role in supporting neuronal compensatory responses to Aβ synaptotoxicity, which potentially lead to their extended survival.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, section of Pharmacology, University of Catania, Catania, Italy
| | - Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, section of Pharmacology, University of Catania, Catania, Italy
| | - Martina Beneventano
- Department of Biomedical and Biotechnological Sciences, section of Pharmacology, University of Catania, Catania, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, section of Pharmacology, University of Catania, Catania, Italy.
| |
Collapse
|
13
|
Michels M, Sonai B, Dal-Pizzol F. Polarization of microglia and its role in bacterial sepsis. J Neuroimmunol 2017; 303:90-98. [PMID: 28087076 DOI: 10.1016/j.jneuroim.2016.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/04/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
Microglial polarization in response to brain inflammatory conditions is a crescent field in neuroscience. However, the effect of systemic inflammation, and specifically sepsis, is a relatively unexplored field that has great interest and relevance. Sepsis has been associated with both early and late harmful events of the central nervous system, suggesting that there is a close link between sepsis and neuroinflammation. During sepsis evolution it is supposed that microglial could exert both neurotoxic and repairing effects depending on the specific microglial phenotype assumed. In this context, here it was reviewed the role of microglial polarization during sepsis-associated brain dysfunction.
Collapse
Affiliation(s)
- Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil.
| | - Beatriz Sonai
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil.
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Medical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
14
|
Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. The History, Status, Gaps, and Future Directions of Neurotoxicology in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:722-732. [PMID: 26824332 PMCID: PMC4892912 DOI: 10.1289/ehp.1409566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 09/25/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Rapid economic development in China has produced serious ecological, environmental, and health problems. Neurotoxicity has been recognized as a major public health problem. The Chinese government, research institutes, and scientists conducted extensive studies concerning the source, characteristics, and mechanisms of neurotoxicants. OBJECTIVES This paper presents, for the first time, a comprehensive history and review of major sources of neurotoxicants, national bodies/legislation engaged, and major neurotoxicology research in China. METHODS Peer-reviewed research and pollution studies by Chinese scientists from 1991 to 2015 were examined. PubMed, Web of Science and Chinese National Knowledge Infrastructure (CNKI) were the major search tools. RESULTS The central problem is an increased exposure to neurotoxicants from air and water, food contamination, e-waste recycling, and manufacturing of household products. China formulated an institutional framework and standards system for management of major neurotoxicants. Basic and applied research was initiated, and international cooperation was achieved. The annual number of peer-reviewed neurotoxicology papers from Chinese authors increased almost 30-fold since 2001. CONCLUSIONS Despite extensive efforts, neurotoxicity remains a significant public health problem. This provides great challenges and opportunities. We identified 10 significant areas that require major educational, environmental, governmental, and research efforts, as well as attention to public awareness. For example, there is a need to increase efforts to utilize new in vivo and in vitro models, determine the potential neurotoxicity and mechanisms involved in newly emerging pollutants, and examine the effects and mechanisms of mixtures. In the future, we anticipate working with scientists worldwide to accomplish these goals and eliminate, prevent and treat neurotoxicity. CITATION Cai T, Luo W, Ruan D, Wu YJ, Fox DA, Chen J. 2016. The history, status, gaps, and future directions of neurotoxicology in China. Environ Health Perspect 124:722-732; http://dx.doi.org/10.1289/ehp.1409566.
Collapse
Affiliation(s)
- Tongjian Cai
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Diyun Ruan
- Neurotoxicology Lab, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Donald A. Fox
- College of Optometry,
- Department of Biology and Biochemistry,
- Department of Pharmacological and Pharmaceutical Sciences, and
- Department of Health and Human Performance, University of Houston, Houston, Texas, USA
| | - Jingyuan Chen
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
15
|
Meireles M, Marques C, Norberto S, Santos P, Fernandes I, Mateus N, Faria A, Calhau C. Anthocyanin effects on microglia M1/M2 phenotype: Consequence on neuronal fractalkine expression. Behav Brain Res 2016; 305:223-8. [DOI: 10.1016/j.bbr.2016.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/29/2016] [Accepted: 03/05/2016] [Indexed: 02/03/2023]
|
16
|
Egawa N, Lok J, Arai K. Mechanisms of cellular plasticity in cerebral perivascular region. PROGRESS IN BRAIN RESEARCH 2016; 225:183-200. [PMID: 27130416 DOI: 10.1016/bs.pbr.2016.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brain vasculature acts in synergism with neurons to maintain brain function. This neurovascular coupling, or trophic coupling between cerebral endothelium and neuron, is now well accepted as a marker for mapping brain activity. Neurovascular coupling is most active in the perivascular region, in which there are ample opportunities for cell-cell interactions within the neurovascular unit. This trophic coupling between cells maintains neurovascular function and cellular plasticity. Recent studies have revealed that even adult brains contain multiple stem cells of various lineages, which may provide cellular plasticity through the process of differentiation among these stem cell populations. In this chapter, we provide an overview of the process by which neurovascular components contribute to cellular plasticity in the cerebral perivascular regions, focusing on mechanisms of cell-cell interaction in adult brain.
Collapse
Affiliation(s)
- N Egawa
- Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - J Lok
- Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - K Arai
- Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.
| |
Collapse
|
17
|
Gene expression analysis in Fmr1KO mice identifies an immunological signature in brain tissue and mGluR5-related signaling in primary neuronal cultures. Mol Autism 2015; 6:66. [PMID: 26697163 PMCID: PMC4687343 DOI: 10.1186/s13229-015-0061-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is a neurodevelopmental disorder whose biochemical manifestations involve dysregulation of mGluR5-dependent pathways, which are widely modeled using cultured neurons. In vitro phenotypes in cultured neurons using standard morphological, functional, and chemical approaches have demonstrated considerable variability. Here, we study transcriptomes obtained in situ in the intact brain tissues of a murine model of FXS to see how they reflect the in vitro state. METHODS We used genome-wide mRNA expression profiling as a robust characterization tool for studying differentially expressed pathways in fragile X mental retardation 1 (Fmr1) knockout (KO) and wild-type (WT) murine primary neuronal cultures and in embryonic hippocampal and cortical murine tissue. To study the developmental trajectory and to relate mouse model data to human data, we used an expression map of human development to plot murine differentially expressed genes in KO/WT cultures and brain. RESULTS We found that transcriptomes from cell cultures showed a stronger signature of Fmr1KO than whole tissue transcriptomes. We observed an over-representation of immunological signaling pathways in embryonic Fmr1KO cortical and hippocampal tissues and over-represented mGluR5-downstream signaling pathways in Fmr1KO cortical and hippocampal primary cultures. Genes whose expression was up-regulated in Fmr1KO murine cultures tended to peak early in human development, whereas differentially expressed genes in embryonic cortical and hippocampal tissues clustered with genes expressed later in human development. CONCLUSIONS The transcriptional profile in brain tissues primarily centered on immunological mechanisms, whereas the profiles from cell cultures showed defects in neuronal activity. We speculate that the isolation and culturing of neurons caused a shift in neurological transcriptome towards a "juvenile" or "de-differentiated" state. Moreover, cultured neurons lack the close coupling with glia that might be responsible for the immunological phenotype in the intact brain. Our results suggest that cultured cells may recapitulate an early phase of the disease, which is also less obscured with a consequent "immunological" phenotype and in vivo compensatory mechanisms observed in the embryonic brain. Together, these results suggest that the transcriptome of cultured primary neuronal cells, in comparison to whole brain tissue, more robustly demonstrated the difference between Fmr1KO and WT mice and might reveal a molecular phenotype, which is typically hidden by compensatory mechanisms present in vivo. Moreover, cultures might be useful for investigating the perturbed pathways in early human brain development and genes previously implicated in autism.
Collapse
|
18
|
Peripherally triggered and GSK-3β-driven brain inflammation differentially skew adult hippocampal neurogenesis, behavioral pattern separation and microglial activation in response to ibuprofen. Transl Psychiatry 2014; 4:e463. [PMID: 25313506 PMCID: PMC4350524 DOI: 10.1038/tp.2014.92] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/24/2014] [Accepted: 08/13/2014] [Indexed: 12/14/2022] Open
Abstract
Both familial and sporadic forms of Alzheimer disease (AD) present memory impairments. It has been proposed that these impairments are related to inflammation in relevant brain areas such as the hippocampus. Whether peripherally triggered and neuron-driven brain inflammation produce similar and equally reversible alterations is a matter of discussion. Here we studied the effects of ibuprofen administration on a familial AD mouse model overexpressing GSK-3β that presents severe brain inflammation. We compared these effects with those observed in a peripherally triggered brain inflammation model based on chronic lipopolysaccharide (LPS) administration. Both proinflammatory stimuli produced equivalent reversible morphological alterations in granule neurons; however, GSK-3β had a much more prominent role in newborn neuron connectivity, causing alterations that were not reversed by ibuprofen. Although both insults triggered similar behavioral impairments, ibuprofen rescued this defect in LPS-treated mice but did not produce any improvement in GSK-3β-overexpressing animals. This observation could be attributable to the different microglial phenotype induced by ibuprofen treatment. These data may be clinically relevant for AD therapies, as GSK-3β appears to determine the efficacy of ibuprofen treatment.
Collapse
|