1
|
Kitpipit W, Scholfield CN, Sangkanu S, Nissapatorn V, Pereira MDL, Paul AK, Mitsuwan W. Virulence factors and quorum sensing as targets of new therapeutic options by plant-derived compounds against bacterial infections caused by human and animal pathogens. Vet World 2023; 16:1346-1355. [PMID: 37577190 PMCID: PMC10421536 DOI: 10.14202/vetworld.2023.1346-1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 08/15/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria and hospital-acquired bacterial infection has become rampant due to antibiotic overuse. Virulence factors are secondary to bacterial growth and are important in their pathogenesis, and therefore, new antimicrobial therapies to inhibit bacterial virulence factors are becoming important strategies against antibiotic resistance. Here, we focus on anti-virulence factors that act through anti-quorum sensing and the subsequent clearance of bacteria by antimicrobial compounds, especially active herbal extracts. These quorum sensing systems are based on toxins, biofilms, and efflux pumps, and bioactive compounds isolated from medicinal plants can treat bacterial virulence pathologies. Ideally, bacterial virulence factors are secondary growth factors of bacteria. Hence, inhibition of bacterial virulence factors could reduce bacterial pathogenesis. Furthermore, anti-virulence factors from herbal compounds can be developed as novel treatments for bacterial infection. Therefore, this narrative review aims to discuss bacterial virulence factors acting through quorum sensing systems that are preserved as targets for treating bacterial infection by plant-derived compounds.
Collapse
Affiliation(s)
- Warangkana Kitpipit
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Food Technology and Innovation Center of Excellence, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - C. Norman Scholfield
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team, World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team, World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
2
|
Shedleur-Bourguignon F, Duchemin T, P. Thériault W, Longpré J, Thibodeau A, Hocine MN, Fravalo P. Distinct Microbiotas Are Associated with Different Production Lines in the Cutting Room of a Swine Slaughterhouse. Microorganisms 2023; 11:microorganisms11010133. [PMID: 36677425 PMCID: PMC9862343 DOI: 10.3390/microorganisms11010133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
The microorganisms found on fresh, raw meat cuts at a slaughterhouse can influence the meat's safety and spoilage patterns along further stages of processing. However, little is known about the general microbial ecology of the production environment of slaughterhouses. We used 16s rRNA sequencing and diversity analysis to characterize the microbiota heterogeneity on conveyor belt surfaces in the cutting room of a swine slaughterhouse from different production lines (each associated with a particular piece/cut of meat). Variation of the microbiota over a period of time (six visits) was also evaluated. Significant differences of alpha and beta diversity were found between the different visits and between the different production lines. Bacterial genera indicative of each visit and production line were also identified. We then created random forest models that, based on the microbiota of each sample, allowed us to predict with 94% accuracy to which visit a sample belonged and to predict with 88% accuracy from which production line it was taken. Our results suggest a possible influence of meat cut on processing surface microbiotas, which could lead to better prevention, surveillance, and control of microbial contamination of meat during processing.
Collapse
Affiliation(s)
- Fanie Shedleur-Bourguignon
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Tom Duchemin
- MESuRS Laboratory (Modelling, Epidemiology and Surveillance of Health Risks), Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
| | - William P. Thériault
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Jessie Longpré
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada
| | - Alexandre Thibodeau
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mounia N. Hocine
- MESuRS Laboratory (Modelling, Epidemiology and Surveillance of Health Risks), Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
| | - Philippe Fravalo
- Le Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
- Correspondence:
| |
Collapse
|
3
|
Alonso VPP, Gonçalves MPMBB, de Brito FAE, Barboza GR, Rocha LDO, Silva NCC. Dry surface biofilms in the food processing industry: An overview on surface characteristics, adhesion and biofilm formation, detection of biofilms, and dry sanitization methods. Compr Rev Food Sci Food Saf 2023; 22:688-713. [PMID: 36464983 DOI: 10.1111/1541-4337.13089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/09/2022]
Abstract
Bacterial biofilm formation in low moisture food processing (LMF) plants is related to matters of food safety, production efficiency, economic loss, and reduced consumer trust. Dry surfaces may appear dry to the naked eye, however, it is common to find a coverage of thin liquid films and microdroplets, known as microscopic surface wetness (MSW). The MSW may favor dry surface biofilm (DSB) formation. DSB formation is similar in other industries, it occurs through the processes of adhesion, production of extracellular polymeric substances, development of microcolonies and maturation, it is mediated by a quorum sensing (QS) system and is followed by dispersal, leading to disaggregation. Species that survive on dry surfaces develop tolerance to different stresses. DSB are recalcitrant and contribute to higher resistance to sanitation, becoming potential sources of contamination, related to the spoilage of processed products and foodborne disease outbreaks. In LMF industries, sanitization is performed using physical methods without the presence of water. Although alternative dry sanitizing methods can be efficiently used, additional studies are still required to develop and assess the effect of emerging technologies, and to propose possible combinations with traditional methods to enhance their effects on the sanitization process. Overall, more information about the different technologies can help to find the most appropriate method/s, contributing to the development of new sanitization protocols. Thus, this review aimed to identify the main characteristics and challenges of biofilm management in low moisture food industries, and summarizes the mechanisms of action of different dry sanitizing methods (alcohol, hot air, UV-C light, pulsed light, gaseous ozone, and cold plasma) and their effects on microbial metabolism.
Collapse
Affiliation(s)
- Vanessa Pereira Perez Alonso
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Maria Paula M B B Gonçalves
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | | - Giovana Rueda Barboza
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
4
|
Alonso VPP, Furtado MM, Iwase CHT, Brondi-Mendes JZ, Nascimento MDS. Microbial resistance to sanitizers in the food industry: review. Crit Rev Food Sci Nutr 2022; 64:654-669. [PMID: 35950465 DOI: 10.1080/10408398.2022.2107996] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hygiene programs which comprise the cleaning and sanitization steps are part of the Good Hygiene Practices (GHP) and are considered essential to ensure food safety and quality. Inadequate hygiene practices may contribute to the occurrence of foodborne diseases, development of microbial resistance to sanitizers, and economic losses. In general, the sanitizer resistance is classified as intrinsic or acquired. The former is an inherent characteristic, naturally present in some microorganisms, whereas the latter is linked to genetic modifications that can occur at random or after continuous exposure to a nonnormal condition. The resistance mechanisms can involve changes in membrane permeability or in the efflux pump, and enzymatic activity. The efflux pump mechanism is the most elucidated in relation to the resistance caused by the use of different types of sanitizers. In addition, microbial resistance to sanitizers can also be favored in the presence of biofilms due to the protection given by the glycocalyx matrix and genetic changes. Therefore, this review aimed to show the main microbial resistance mechanisms to sanitizers, including genetic modifications, biofilm formation, and permeability barrier.
Collapse
Affiliation(s)
| | - Marianna Miranda Furtado
- Department of Food Science and Nutrition, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
5
|
Nadar S, Khan T, Patching SG, Omri A. Development of Antibiofilm Therapeutics Strategies to Overcome Antimicrobial Drug Resistance. Microorganisms 2022; 10:microorganisms10020303. [PMID: 35208758 PMCID: PMC8879831 DOI: 10.3390/microorganisms10020303] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
A biofilm is a community of stable microorganisms encapsulated in an extracellular matrix produced by themselves. Many types of microorganisms that are found on living hosts or in the environment can form biofilms. These include pathogenic bacteria that can serve as a reservoir for persistent infections, and are culpable for leading to a broad spectrum of chronic illnesses and emergence of antibiotic resistance making them difficult to be treated. The absence of biofilm-targeting antibiotics in the drug discovery pipeline indicates an unmet opportunity for designing new biofilm inhibitors as antimicrobial agents using various strategies and targeting distinct stages of biofilm formation. The strategies available to control biofilm formation include targeting the enzymes and proteins specific to the microorganism and those involved in the adhesion pathways leading to formation of resistant biofilms. This review primarily focuses on the recent strategies and advances responsible for identifying a myriad of antibiofilm agents and their mechanism of biofilm inhibition, including extracellular polymeric substance synthesis inhibitors, adhesion inhibitors, quorum sensing inhibitors, efflux pump inhibitors, and cyclic diguanylate inhibitors. Furthermore, we present the structure–activity relationships (SAR) of these agents, including recently discovered biofilm inhibitors, nature-derived bioactive scaffolds, synthetic small molecules, antimicrobial peptides, bioactive compounds isolated from fungi, non-proteinogenic amino acids and antibiotics. We hope to fuel interest and focus research efforts on the development of agents targeting the uniquely complex, physical and chemical heterogeneous biofilms through a multipronged approach and combinatorial therapeutics for a more effective control and management of biofilms across diseases.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research, Mumbai 400056, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Simon G. Patching
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: or (S.G.P.); (A.O.)
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: or (S.G.P.); (A.O.)
| |
Collapse
|
6
|
Xu Z, Huang T, Du M, Soteyome T, Lan H, Hong W, Peng F, Fu X, Peng G, Liu J, Kjellerup BV. Regulatory network controls microbial biofilm development, with Candida albicans as a representative: from adhesion to dispersal. Bioengineered 2022; 13:253-267. [PMID: 34709974 PMCID: PMC8805954 DOI: 10.1080/21655979.2021.1996747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Microorganisms mainly exist in the form of biofilm in nature. Biofilm can contaminate food and drinking water system, as well as cause chronic wound infections, thereby posing a potential threat to public health safety. In the last two decades, researchers have made efforts to investigate the genetic contributors control different stages of biofilm development (adherence, initiation, maturation, and dispersal). As an opportunistic pathogen, C. albicans causes severe superficial or systemic infections with high morbidity and mortality under conditions of immune dysfunction. It has been reported that 80% of C. albicans infections are directly or indirectly associated with biofilm formation on host or abiotic surfaces including indwelling medical devices, resulting in high morbidity and mortality. Significantly, the outcome of C. albicans biofilm development includes enhanced invasion, exacerbated inflammatory responses and intrinsic resistance to antimicrobial chemotherapy. Thus, this review aimed at providing a comprehensive overview of the regulatory network controls microbial biofilm development, with C. albicans as a representative, served as reference for therapeutic targets.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Applied Microbiology China Southern; Insititue of Microbiology, Guangdong Academy of Sciences 510070, China
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD20742,USA
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
- National Institute of Fundamental Studies, Hantana road, Kandy, Sri Lanka
| | - Tengyi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Min Du
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Fu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD20742,USA
| | - Birthe V. Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD20742,USA
| |
Collapse
|
7
|
Bright R, Fernandes D, Wood J, Palms D, Burzava A, Ninan N, Brown T, Barker D, Vasilev K. Long-term antibacterial properties of a nanostructured titanium alloy surface: An in vitro study. Mater Today Bio 2021; 13:100176. [PMID: 34938990 DOI: 10.1016/j.mtbio.2021.100176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
The demand for joint replacement and other orthopedic surgeries involving titanium implants is continuously increasing; however, 1%-2% of surgeries result in costly and devastating implant associated infections (IAIs). Pseudomonas aeruginosa and Staphylococcus aureus are two common pathogens known to colonise implants, leading to serious complications. Bioinspired surfaces with spike-like nanotopography have previously been shown to kill bacteria upon contact; however, the longer-term potential of such surfaces to prevent or delay biofilm formation is unclear. Hence, we monitored biofilm formation on control and nanostructured titanium disc surfaces over 21 days following inoculation with Pseudomonas aeruginosa and Staphylococcus aureus. We found a consistent 2-log or higher reduction in live bacteria throughout the time course for both bacteria. The biovolume on nanostructured discs was also significantly lower than control discs at all time points for both bacteria. Analysis of the biovolume revealed that for the nanostructured surface, bacteria was killed not just on the surface, but at locations above the surface. Interestingly, pockets of bacterial regrowth on top of the biomass occurred in both bacterial species, however this was more pronounced for S. aureus cultures after 21 days. We found that the nanostructured surface showed antibacterial properties throughout this longitudinal study. To our knowledge this is the first in vitro study to show reduction in the viability of bacterial colonisation on a nanostructured surface over a clinically relevant time frame, providing potential to reduce the likelihood of implant associated infections.
Collapse
Affiliation(s)
- Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Daniel Fernandes
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Jonathan Wood
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Anouck Burzava
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Neethu Ninan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Toby Brown
- Corin Australia, Pymble, NSW 2073, Australia
| | - Dan Barker
- Corin Australia, Pymble, NSW 2073, Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| |
Collapse
|
8
|
Pick FC, Fish KE, Husband S, Boxall JB. Non-invasive Biofouling Monitoring to Assess Drinking Water Distribution System Performance. Front Microbiol 2021; 12:730344. [PMID: 34777279 PMCID: PMC8581547 DOI: 10.3389/fmicb.2021.730344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Biofilms are endemic in drinking water distribution systems (DWDS), forming on all water and infrastructure interfaces. They can pose risks to water quality and hence consumers. Our understanding of these biofilms is limited, in a large part due to difficulties in sampling them without unacceptable disruption. A novel, non-destructive and non-disruptive biofilm monitoring device (BMD), which includes use of flow cytometry analysis, was developed to assess biofouling rates. Laboratory based experiments established optimal configurations and verified reliable cell enumeration. Deployment at three operational field sites validated assessment of different biofouling rates. These differences in fouling rates were not obvious from bulk water sampling and analysis, but did have a strong correlation with long-term performance data of the associated networks. The device offers the potential to assess DWDS performance in a few months, compared to the number of years required to infer findings from historical customer contact data. Such information is vital to improve the management of our vast, complex and uncertain drinking water supply systems; for example rapidly quantifying the benefits of improvements in water treatment works or changes to maintenance of the network.
Collapse
Affiliation(s)
- Frances C Pick
- Department of Civil and Structural Engineering, Sheffield Water Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Katherine E Fish
- Department of Civil and Structural Engineering, Sheffield Water Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Stewart Husband
- Department of Civil and Structural Engineering, Sheffield Water Centre, The University of Sheffield, Sheffield, United Kingdom
| | - Joby B Boxall
- Department of Civil and Structural Engineering, Sheffield Water Centre, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Pereira A, Silva AR, Melo LF. Legionella and Biofilms-Integrated Surveillance to Bridge Science and Real-Field Demands. Microorganisms 2021; 9:microorganisms9061212. [PMID: 34205095 PMCID: PMC8228026 DOI: 10.3390/microorganisms9061212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Legionella is responsible for the life-threatening pneumonia commonly known as Legionnaires’ disease or legionellosis. Legionellosis is known to be preventable if proper measures are put into practice. Despite the efforts to improve preventive approaches, Legionella control remains one of the most challenging issues in the water treatment industry. Legionellosis incidence is on the rise and is expected to keep increasing as global challenges become a reality. This puts great emphasis on prevention, which must be grounded in strengthened Legionella management practices. Herein, an overview of field-based studies (the system as a test rig) is provided to unravel the common roots of research and the main contributions to Legionella’s understanding. The perpetuation of a water-focused monitoring approach and the importance of protozoa and biofilms will then be discussed as bottom-line questions for reliable Legionella real-field surveillance. Finally, an integrated monitoring model is proposed to study and control Legionella in water systems by combining discrete and continuous information about water and biofilm. Although the successful implementation of such a model requires a broader discussion across the scientific community and practitioners, this might be a starting point to build more consistent Legionella management strategies that can effectively mitigate legionellosis risks by reinforcing a pro-active Legionella prevention philosophy.
Collapse
|
10
|
Dimopoulou M, Kefalloniti V, Tsakanikas P, Papanikolaou S, Nychas GJE. Assessing the Biofilm Formation Capacity of the Wine Spoilage Yeast Brettanomyces bruxellensis through FTIR Spectroscopy. Microorganisms 2021; 9:microorganisms9030587. [PMID: 33809238 PMCID: PMC7999561 DOI: 10.3390/microorganisms9030587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/27/2022] Open
Abstract
Brettanomyces bruxellensis is a wine spoilage yeast known to colonize and persist in production cellars. However, knowledge on the biofilm formation capacity of B. bruxellensis remains limited. The present study investigated the biofilm formation of 11 B. bruxellensis strains on stainless steel coupons after 3 h of incubation in an aqueous solution. FTIR analysis was performed for both planktonic and attached cells, while comparison of the obtained spectra revealed chemical groups implicated in the biofilm formation process. The increased region corresponding to polysaccharides and lipids clearly discriminated the obtained spectra, while the absorption peaks at the specific wavenumbers possibly reveal the presence of β-glucans, mannas and ergosterol. Unsupervised clustering and supervised classification were employed to identify the important wavenumbers of the whole spectra. The fact that all the metabolic fingerprints of the attached versus the planktonic cells were similar within the same cell phenotype class and different between the two phenotypes, implies a clear separation of the cell phenotype; supported by the results of the developed classification model. This study represents the first to succeed at applying a non-invasive technique to reveal the metabolic fingerprint implicated in the biofilm formation capacity of B. bruxellensis, underlying the homogenous mechanism within the yeast species.
Collapse
|
11
|
Ta C, Wong G, Cole W, Medvedev G. Scrub sink contamination and transmission to operating room personnel. New Microbes New Infect 2020; 37:100754. [PMID: 32995014 PMCID: PMC7502367 DOI: 10.1016/j.nmni.2020.100754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 01/16/2023] Open
Abstract
Multiple studies have established the contamination of hospital sinks and transmission to hospital personnel. Few studies have assessed the contamination and transmission of microorganisms from the faucets of operating bay scrub sinks to operating room (OR) personnel, a potential route of infection for patients. This study aimed to investigate if there was pathogenic contamination of scrub sinks and possible transmission of those pathogens to the hands of OR personnel after preoperative hand disinfection. Swabs were taken from the hands of 50 OR personnel and from the faucets of 24 scrubs sinks at two different hospital sites, and were cultured. Hands were swabbed after completing a surgical hand scrub. Results were reported in colony-forming units per millilitre. There was significant scrub sink contamination with primarily Gram-negative organisms, such as Delftia acidovorans and Sphingomonas paucimobilis. There was no overlap in bacterial species between the cultures from hands and scrub sinks. Cultures from the sinks and the hands of the OR personnel from one site had significantly higher bacterial growth compared with the other site (p < 0.0001 and p < 0.0118, respectively). The data showed significant contamination on the faucets of operating bay scrub sinks. However, there was no observed transmission of pathogens from the scrub sinks to OR personnel, shown by the lack of overlap in bacterial species. Routine hygienic maintenance of scrub sinks is recommended.
Collapse
Affiliation(s)
- C Ta
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - G Wong
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - W Cole
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - G Medvedev
- Department of Orthopaedic Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
12
|
Xiao Y, Jiang SC, Wang X, Muhammad T, Song P, Zhou B, Zhou Y, Li Y. Mitigation of biofouling in agricultural water distribution systems with nanobubbles. ENVIRONMENT INTERNATIONAL 2020; 141:105787. [PMID: 32402981 DOI: 10.1016/j.envint.2020.105787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 05/22/2023]
Abstract
Biofouling poses considerable technical challenges to agricultural irrigation systems. Controlling biofouling with strong chemical biocides is not only expensive and sometimes ineffective, but also contributes to environmental pollution. This study investigated the application of nanobubbles (NBs) on minimizing biofouling in agricultural irrigation water pipelines. Treatment performances were assessed using low concentration bubbles (LCB) and high concentration bubbles (HCB) together with a negative control (CK: no-NBs). 16 s rRNA gene sequencing and X-ray diffraction were used to characterize the microbial community and mineral compositions of biofilms in water emitters. Results demonstrated that NBs effectively mitigated biofouling through reducing fixed-biomass by 31.3-52.1%. A significantly different microbial composition was found in the biofilm community with reduced biodiversity. Molecular ecological network analysis revealed that NBs were detrimental to the mutualistic interactions among microbial species - destabilizing the network complexity and size, which was expressed as decreasing in extracellular polymers and biofilm biomass. Furthermore, NBs significantly decreased the deposition of carbonate, silicate, phosphate, and quartz on the pipe surfaces, leading to reductions of total content of minerals in biofilms. Therefore, this study demonstrated that NBs treatment could be an effective, and eco-friendly solution for biofouling control in agricultural water distribution systems.
Collapse
Affiliation(s)
- Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92617, United States
| | - Xiaoyao Wang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; College of Water and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Tahir Muhammad
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Peng Song
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Technologies and Models for Cyclic Utilization of Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yunpeng Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
13
|
Fu Y, An Q, Cheng Y, Yang Y, Wang L, Zhang H, Ge Y, Li D, Zhang Y. A Textile Pile Debridement Material Consisting of Polyester Fibers for in Vitro Removal of Biofilm. Polymers (Basel) 2020; 12:polym12061360. [PMID: 32560399 PMCID: PMC7362169 DOI: 10.3390/polym12061360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 11/25/2022] Open
Abstract
Biofilms formed on skin wound lead to inflammation and a delay of healing. In the present work, a novel textile pile debridement material was prepared and treated by plasma. Samples before and after plasma treatment were characterized by a series of methods, including scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and water uptake capacity. Besides, mechanical, coagulation, and in vitro biofilm removal performances of the textile pile debridement material were evaluated, with a medical gauze as a control. The results demonstrate that the plasma treatment produced corrosions and oxygen-containing polar groups on the fiber surface, offering an enhanced water uptake capacity of the textile pile debridement material. In addition, compressive tests certify the mechanical performances of the textile pile debridement material in both dry and wet conditions. The results from a kinetic clotting time test suggest a favorable ability to promote blood coagulation. Furthermore, the results of an MTT cell viability assay, SEM, and confocal laser scanning microscopy (CLSM) illustrate that the textile pile debridement material demonstrates a more superior in vitro biofilm removal performance than medical gauze. All of these characterizations suggest that the textile pile debridement material can offer a feasible application for clinical wound debridement.
Collapse
Affiliation(s)
- Yijun Fu
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, College of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Qi An
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
| | - Yue Cheng
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China;
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai 201620, China;
| | - Haifeng Zhang
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, College of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yan Ge
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, College of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Dawei Li
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
- Correspondence: (D.L.); (Y.Z.); Tel.: +86-513-8501-2837 (D.L.); +86-513-8501-2871 (Y.Z.)
| | - Yu Zhang
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, College of Textile and Clothing, Nantong University, Nantong 226019, China
- Correspondence: (D.L.); (Y.Z.); Tel.: +86-513-8501-2837 (D.L.); +86-513-8501-2871 (Y.Z.)
| |
Collapse
|
14
|
Landa-Marbán D, Bødtker G, Kumar K, Pop IS, Radu FA. An Upscaled Model for Permeable Biofilm in a Thin Channel and Tube. Transp Porous Media 2020. [DOI: 10.1007/s11242-020-01381-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AbstractIn this paper, we derive upscaled equations for modeling biofilm growth in porous media. The resulting macroscale mathematical models consider permeable multi-species biofilm including water flow, transport, detachment and reactions. The biofilm is composed of extracellular polymeric substances (EPS), water, active bacteria and dead bacteria. The free flow is described by the Stokes and continuity equations, and the water flux inside the biofilm by the Brinkman and continuity equations. The nutrients are transported in the water phase by convection and diffusion. This pore-scale model includes variations in the biofilm composition and size due to reproduction of bacteria, production of EPS, death of bacteria and shear forces. The model includes a water–biofilm interface between the free flow and the biofilm. Homogenization techniques are applied to obtain upscaled models in a thin channel and a tube, by investigating the limit as the ratio of the aperture to the length $$\varepsilon$$ε of both geometries approaches to zero. As $$\varepsilon$$ε gets smaller, we obtain that the percentage of biofilm coverage area over time predicted by the pore-scale model approaches the one obtained using the effective equations, which shows a correspondence between both models. The two derived porosity–permeability relations are compared to two empirical relations from the literature. The resulting numerical computations are presented to compare the outcome of the effective (upscaled) models for the two mentioned geometries.
Collapse
|
15
|
Zhang Z, Weng Y, Ding Y, Qian S. Use of Genetically Modified Bacteria to Repair Cracks in Concrete. MATERIALS 2019; 12:ma12233912. [PMID: 31779264 PMCID: PMC6926745 DOI: 10.3390/ma12233912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
In this paper, we studied the crack-repair by spraying bacteria-based liquid around the cracks in concrete. To enhance the repair efficiency and speed up the repair process, the transposon mutagenesis method was employed to modify the genes of Bacillus halodurans and create a mutant bacterial strain with higher efficiency of calcium carbonate productivity by catalyzing the combination of carbonate and calcium ion. The efficiency of crack-repairing in concrete by spraying two kinds of bacterial liquid was evaluated via image analysis, X-ray computed tomography (X-CT) scanning technology and the sorptivity test. The results show that the crack-repair efficiency was enhanced very evidently by spraying genetically modified bacterial-liquid as no microbiologically induced calcite precipitation (MICP) was found within the cracks for concrete samples sprayed using wild type bacterial-liquid. In addition, the crack-repair process was also shortened significantly in the case of genetically modified bacteria.
Collapse
Affiliation(s)
- Zhigang Zhang
- Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Ministry of Education, Chongqing 400045, China;
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 637551, Singapore; (Y.W.); (Y.D.)
| | - Yiwei Weng
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 637551, Singapore; (Y.W.); (Y.D.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Singapore 639798, Singapore
| | - Yuanzhao Ding
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 637551, Singapore; (Y.W.); (Y.D.)
| | - Shunzhi Qian
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 637551, Singapore; (Y.W.); (Y.D.)
- Correspondence:
| |
Collapse
|
16
|
Falk NA. Surfactants as Antimicrobials: A Brief Overview of Microbial Interfacial Chemistry and Surfactant Antimicrobial Activity. J SURFACTANTS DETERG 2019; 22:1119-1127. [PMID: 32336911 PMCID: PMC7166552 DOI: 10.1002/jsde.12293] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/23/2019] [Indexed: 11/06/2022]
Abstract
In this brief overview of a large and complex subject, as presented at the 2018 Surfactants in Solution conference, the need for, and impact of, hard surface antimicrobial products is demonstrated. The composition of the interfaces of three common classes of pathological microbes, bacteria, viruses, and fungi, is discussed so that surfactant and cleaning product development scientists better understand their interfacial characteristics. Studies of antimicrobial efficacy from the four major classes of surfactants (cationic, anionic, amphoteric, and nonionic) are shown. The need for preservatives in surfactants is elucidated. The regulatory aspects of antimicrobials in cleaning products to make antimicrobial claims are stressed.
Collapse
Affiliation(s)
- Nancy A Falk
- Clorox Services Company 4900 Johnson Drive, Pleasanton CA 94588 USA
| |
Collapse
|
17
|
Godoy-Santos F, Pitts B, Stewart PS, Mantovani HC. Nisin penetration and efficacy against Staphylococcus aureus biofilms under continuous-flow conditions. MICROBIOLOGY-SGM 2019; 165:761-771. [PMID: 31088602 DOI: 10.1099/mic.0.000804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biofilms may enhance the tolerance of bacterial pathogens to disinfectants, biocides and other stressors by restricting the penetration of antimicrobials into the matrix-enclosed cell aggregates, which contributes to the recalcitrance of biofilm-associated infections. In this work, we performed real-time monitoring of the penetration of nisin into the interior of Staphylococcus aureus biofilms under continuous flow and compared the efficacy of this lantibiotic against planktonic and sessile cells of S. aureus. Biofilms were grown in Center for Disease Control (CDC) reactors and the spatial and temporal effects of nisin action on S. aureus cells were monitored by real-time confocal microscopy. Under continuous flow, nisin caused loss of membrane integrity of sessile cells and reached the bottom of the biofilms within ~20 min of exposure. Viability analysis using propidium iodide staining indicated that nisin was bactericidal against S. aureus biofilm cells. Time-kill assays showed that S. aureus viability reduced 6.71 and 1.64 log c.f.u. ml-1 for homogenized planktonic cells in exponential and stationary phase, respectively. For the homogenized and intact S. aureus CDC biofilms, mean viability decreased 1.25 and 0.50 log c.f.u. ml-1, respectively. Our results demonstrate the kinetics of biofilm killing by nisin under continuous-flow conditions, and shows that alterations in the physiology of S. aureus cells contribute to variations in sensitivity to the lantibiotic. The approach developed here could be useful to evaluate the antibiofilm efficacy of other bacteriocins either independently or in combination with other antimicrobials.
Collapse
Affiliation(s)
- Fernanda Godoy-Santos
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Betsey Pitts
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Hilario C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
18
|
Aggarwal S, Gomez-Smith CK, Jeon Y, LaPara TM, Waak MB, Hozalski RM. Effects of Chloramine and Coupon Material on Biofilm Abundance and Community Composition in Bench-Scale Simulated Water Distribution Systems and Comparison with Full-Scale Water Mains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13077-13088. [PMID: 30351033 DOI: 10.1021/acs.est.8b02607] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The vast majority of bacteria in drinking water distribution systems (DWDSs) reside in biofilms on the interior walls of water mains. Little is known about how water quality conditions affect water-main biofilms because of the inherent limitations in experimenting with drinking water supplies and accessing the water mains for sampling. Bench-scale reactors permit experimentation and ease of biofilm sampling, yet questions remain as to how well biofilms in laboratory reactors represent those on water mains. In this study, the effects of DWDS pipe materials and chloramine residual on biofilms were investigated by cultivating biofilms on cement, polyvinyl chloride, and high density polyethylene coupons in CDC reactors for up to 28 months in the presence of chloraminated or dechlorinated tap water. The bench-scale biofilm microbiomes were then compared with the microbiome on a water main from the full-scale system that supplied the water to the reactors. The presence of a chloramine residual (1.74 ± 0.21 mg/L) suppressed biofilm accumulation and selected for Mycobacterium-like and Sphingopyxis-like operational taxonomic units (OTUs) while the destruction of the chloramine residual resulted in a significant increase in biomass quantity and a shift toward a more diverse community dominated by Nitrospira-like OTUs, which, our results suggest, may be complete ammonia oxidizers (comammox). Coupon material, however, had a relatively minor effect on the abundance and community composition of the biofilm bacteria. Although biofilm communities from the chloraminated water reactor and the water mains shared some dominant populations (namely, Mycobacterium- and Nitrosomonas-like OTUs), the communities were significantly different. This manuscript provides novel insights into the effects of dechlorination and pipe material on biofilm community composition. Furthermore, to our knowledge, it is the first study to compare biofilm in a tap water-fed, bench-scale simulated distribution system to biofilm on water mains from the full-scale system supplying the tap water.
Collapse
Affiliation(s)
- Srijan Aggarwal
- Department of Civil and Environmental Engineering , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - C Kimloi Gomez-Smith
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Youchul Jeon
- Department of Civil and Environmental Engineering , University of Toledo , Toledo , Ohio 43606-339 , United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Michael B Waak
- Department of Civil and Environmental Engineering , Norwegian University of Science and Technology , 7491 Trondheim , Norway
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| |
Collapse
|
19
|
Towards standardized mechanical characterization of microbial biofilms: analysis and critical review. NPJ Biofilms Microbiomes 2018; 4:17. [PMID: 30131867 PMCID: PMC6102240 DOI: 10.1038/s41522-018-0062-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 02/05/2023] Open
Abstract
Developing reliable anti-biofilm strategies or efficient biofilm-based bioprocesses strongly depends on having a clear understanding of the mechanisms underlying biofilm development, and knowledge of the relevant mechanical parameters describing microbial biofilm behavior. Many varied mechanical testing methods are available to assess these parameters. The mechanical properties thus identified can then be used to compare protocols such as antibiotic screening. However, the lack of standardization in both mechanical testing and the associated identification methods for a given microbiological goal remains a blind spot in the biofilm community. The pursuit of standardization is problematic, as biofilms are living structures, i.e., both complex and dynamic. Here, we review the main available methods for characterizing the mechanical properties of biofilms through the lens of the relationship linking experimental testing to the identification of mechanical parameters. We propose guidelines for characterizing biofilms according to microbiological objectives that will help the reader choose an appropriate test and a relevant identification method for measuring any given mechanical parameter. The use of a common methodology for the mechanical characterization of biofilms will enable reliable analysis and comparison of microbiological protocols needed for improvement of engineering process and screening.
Collapse
|
20
|
Apun K, Fung Pui C, Jalan J, Maurice Bi L, Su`ut L, Fatma Hash H. Microtitre Plate Assay for the Quantification of Biofilm Formation by Pathogenic Leptospira. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jm.2017.146.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
McNamara P, Krzmarzick M. Introductory Editorial: Water Microbiology. Microbiol Insights 2015; 8:33-5. [PMID: 27103820 PMCID: PMC4836622 DOI: 10.4137/mbi.s39866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Patrick McNamara
- Assistant Professor, Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI, USA
| | - Mark Krzmarzick
- Assistant Professor, Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|