1
|
El Jeni R, Villot C, Koyun OY, Osorio-Doblado A, Baloyi JJ, Lourenco JM, Steele M, Callaway TR. Invited review: "Probiotic" approaches to improving dairy production: Reassessing "magic foo-foo dust". J Dairy Sci 2024; 107:1832-1856. [PMID: 37949397 DOI: 10.3168/jds.2023-23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The gastrointestinal microbial consortium in dairy cattle is critical to determining the energetic status of the dairy cow from birth through her final lactation. The ruminant's microbial community can degrade a wide variety of feedstuffs, which can affect growth, as well as production rate and efficiency on the farm, but can also affect food safety, animal health, and environmental impacts of dairy production. Gut microbial diversity and density are powerful tools that can be harnessed to benefit both producers and consumers. The incentives in the United States to develop Alternatives to Antibiotics for use in food-animal production have been largely driven by the Veterinary Feed Directive and have led to an increased use of probiotic approaches to alter the gastrointestinal microbial community composition, resulting in improved heifer growth, milk production and efficiency, and animal health. However, the efficacy of direct-fed microbials or probiotics in dairy cattle has been highly variable due to specific microbial ecological factors within the host gut and its native microflora. Interactions (both synergistic and antagonistic) between the microbial ecosystem and the host animal physiology (including epithelial cells, immune system, hormones, enzyme activities, and epigenetics) are critical to understanding why some probiotics work but others do not. Increasing availability of next-generation sequencing approaches provides novel insights into how probiotic approaches change the microbial community composition in the gut that can potentially affect animal health (e.g., diarrhea or scours, gut integrity, foodborne pathogens), as well as animal performance (e.g., growth, reproduction, productivity) and fermentation parameters (e.g., pH, short-chain fatty acids, methane production, and microbial profiles) of cattle. However, it remains clear that all direct-fed microbials are not created equal and their efficacy remains highly variable and dependent on stage of production and farm environment. Collectively, data have demonstrated that probiotic effects are not limited to the simple mechanisms that have been traditionally hypothesized, but instead are part of a complex cascade of microbial ecological and host animal physiological effects that ultimately impact dairy production and profitability.
Collapse
Affiliation(s)
- R El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - C Villot
- Lallemand SAS, Blagnac, France, 31069
| | - O Y Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - A Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J J Baloyi
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - M Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
2
|
Krogstad KC, Bradford BJ. The effects of feeding α-amylase-enhanced corn silage with different dietary starch concentrations to lactating dairy cows on milk production, nutrient digestibility, and blood metabolites. J Dairy Sci 2023; 106:4666-4681. [PMID: 37268561 DOI: 10.3168/jds.2022-23030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/04/2023] [Indexed: 06/04/2023]
Abstract
Corn silage is one of the most common ingredients fed to dairy cattle. Advancement of corn silage genetics has improved nutrient digestibility and dairy cow lactation performance in the past. A corn silage hybrid with enhanced endogenous α-amylase activity (Enogen, Syngenta Seeds LLC) may improve milk production efficiency and nutrient digestibility when fed to lactating dairy cows. Furthermore, evaluating how Enogen silage interacts with different dietary starch content is important because the ruminal environment is influenced by the amount of rumen fermentable organic matter consumed. To evaluate the effects of Enogen corn silage and dietary starch content, we conducted an 8-wk randomized complete block experiment (2-wk covariate period, 6-wk experimental period) with a 2 × 2 factorial treatment arrangement using 44 cows (n = 11/treatment; 28 multiparous, 16 primiparous; 151 ± 42 d in milk; 668 ± 63.6 kg of body weight). Treatment factors were Enogen corn silage (ENO) or control (CON) corn silage included at 40% of diet dry matter and 25% (LO) or 30% (HI) dietary starch. Corn silage used in CON treatment was a similar hybrid as in ENO but without enhanced α-amylase activity. The experimental period began 41 d after silage harvest. Feed intake and milk yield data were collected daily, plasma metabolites and fecal pH were measured weekly, and digestibility was measured during the first and final weeks of the experimental period. Data were analyzed using a linear mixed model approach with repeated measures for all variables except for body condition score change and body weight change. Corn silage, starch, week, and their interactions were included as fixed effects; baseline covariates and their interactions with corn silage and starch were also tested. Block and cow served as the random effects. Plasma glucose, insulin, haptoglobin, and serum amyloid A concentrations were unaffected by treatment. Fecal pH was greater for cows fed ENO versus CON. Dry matter, crude protein, neutral detergent fiber, and starch digestibility were all greater for ENO than CON during wk 1, but differences were less by wk 6. The HI treatments depressed neutral detergent fiber digestibility compared with LO. Dry matter intake (DMI) was not affected by corn silage but was affected by the interaction of starch and week; in wk 1, DMI was similar but by wk 6, cows fed HI had 1.8 ± 0.93 kg/d less DMI than LO cows. Milk, energy-corrected milk, and milk protein yields were 1.7 ± 0.94 kg/d, 1.3 ± 0.70 kg/d, and 65 ± 27 g/d greater for HI than LO, respectively. In conclusion, ENO increased digestibility but it did not affect milk yield, component yields, or DMI. Increasing dietary starch content improved milk production and feed efficiency without affecting markers of inflammation or metabolism.
Collapse
Affiliation(s)
- K C Krogstad
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - B J Bradford
- Department of Animal Science, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
3
|
Villot C, Martin C, Bodin J, Durand D, Graulet B, Ferlay A, Mialon M, Trevisi E, Silberberg M. Combinations of non-invasive indicators to detect dairy cows submitted to high-starch-diet challenge. Animal 2020; 14:388-398. [PMID: 31311612 PMCID: PMC6974427 DOI: 10.1017/s1751731119001629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 06/04/2019] [Accepted: 06/20/2019] [Indexed: 11/07/2022] Open
Abstract
High-starch diets (HSDs) fed to high-producing ruminants are often responsible for rumen dysfunction and could impair animal health and production. Feeding HSDs are often characterized by transient rumen pH depression, accurate monitoring of which requires costly or invasive methods. Numerous clinical signs can be followed to monitor such diet changes but no specific indicator is able to make a statement at animal level on-farm. The aim of this pilot study was to assess a combination of non-invasive indicators in dairy cows able to monitor a HSD in experimental conditions. A longitudinal study was conducted in 11 primiparous dairy cows fed with two different diets during three successive periods: a 4-week control period (P1) with a low-starch diet (LSD; 13% starch), a 4-week period with an HSD (P2, 35% starch) and a 3-week recovery period (P3) again with the LSD. Animal behaviour was monitored throughout the experiment, and faeces, urine, saliva, milk and blood were sampled simultaneously in each animal at least once a week for analysis. A total of 136 variables were screened by successive statistical approaches including: partial least squares-discriminant analysis, multivariate analysis and mixed-effect models. Finally, 16 indicators were selected as the most representative of a HSD challenge. A generalized linear mixed model analysis was applied to highlight parsimonious combinations of indicators able to identify animals under our experimental conditions. Eighteen models were established and the combination of milk urea nitrogen, blood bicarbonate and feed intake was the best to detect the different periods of the challenge with both 100% of specificity and sensitivity. Other indicators such as the number of drinking acts, fat:protein ratio in milk, urine, and faecal pH, were the most frequently used in the proposed models. Finally, the established models highlight the necessity for animals to have more than 1 week of recovery diet to return to their initial control state after a HSD challenge. This pilot study demonstrates the interest of using combinations of non-invasive indicators to monitor feed changes from a LSD to a HSD to dairy cows in order to improve prevention of rumen dysfunction on-farm. However, the adjustment and robustness of the proposed combinations of indicators need to be challenged using a greater number of animals as well as different acidogenic conditions before being applied on-farm.
Collapse
Affiliation(s)
- C. Villot
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
- Lallemand SAS, F-31702 Blagnac, France
- Valorex, Le Messayais, F-35210 Combourtillé, France
- Terrena, La Noëlle, F-44150 Ancenis, France
| | - C. Martin
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - J. Bodin
- BR3 Consultants, F-69007 Lyon, France
| | - D. Durand
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - B. Graulet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - A. Ferlay
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - M.M. Mialon
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - E. Trevisi
- Department of Agriculture, Food and Environmental Science CEO of CERZOO, DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M. Silberberg
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|
4
|
Azad E, Narvaez N, Derakhshani H, Allazeh AY, Wang Y, McAllister TA, Khafipour E. Effect of Propionibacterium acidipropionici P169 on the rumen and faecal microbiota of beef cattle fed a maize-based finishing diet. Benef Microbes 2017; 8:785-799. [PMID: 28856906 DOI: 10.3920/bm2016.0145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Direct fed microbial supplementation with lactic acid utilising bacteria (i.e. Propionibacterium acidipropionici P169) has been shown to alleviate the severity of subacute ruminal acidosis in high-grain fed beef cattle. This study was carried out to explore the impact of P169 supplementation on modulating rumen and hindgut microbiota of high-grain fed steers. Seven ruminally-canulated high-grain fed steers were randomly assigned to two treatment groups: control diet (n=3) and the same diet supplemented with P169 added at a rate of 1×1011 cfu/head/d (n=4). Samples were collected every 28 days for a 101 d period (5 time points) and subjected to qPCR quantification of P169 and high-throughput sequencing of bacterial V4 16S rRNA genes. Ruminal abundance of P169 was maintained at elevated levels (P=0.03) both in liquid and solid fractions post supplementation. Concomitant with decreased proportion of amylolytic (such as Prevotella) and key lactate-utilisers (such as Veillonellaceae and Megasphaera), the proportions of cellulolytic bacterial lineages (such as Ruminococcaceae, Lachnospiraceae, Clostridiaceae, and Christensenellaceae) were enriched in the rumen microbiota of P169-supplemented steers. These, coupled with elevated molar proportions of branched-chain fatty acids and increased concentration of ammonia in the rumen content of P169-supplemented steers, indicated an improved state of fibrolytic and proteolytic activity in response to P169 supplementation. Further, exploring the hindgut microbiota of P169-supplemented steers revealed enrichment of major amylolytic bacterial lineages, such as Prevotella, Blautia, and Succinivibrionaceae, which might be indicative of an increased availability of carbohydrates in the hindgut ecosystem following P169 supplementation. Collectively, the present study provides insights into the microbiota dynamics that underlie the P169-associated shifts in the rumen fermentation profile of high-grain fed steers.
Collapse
Affiliation(s)
- E Azad
- 1 Department of Animal Science, University of Manitoba, 12 Dafoe road, Winnipeg, MB R3T 2N2, Canada
| | - N Narvaez
- 2 Agriculture and Agri-Food Canada, Lethbridge Research Center, 5403 1 Ave S, Lethbridge, AB T1J 4P4, Canada
| | - H Derakhshani
- 1 Department of Animal Science, University of Manitoba, 12 Dafoe road, Winnipeg, MB R3T 2N2, Canada
| | - A Y Allazeh
- 2 Agriculture and Agri-Food Canada, Lethbridge Research Center, 5403 1 Ave S, Lethbridge, AB T1J 4P4, Canada.,4 Department of Clinical Nutrition, College of Applied Medical Sciences, P.O. Box 2440, University of Hail, Saudi Arabia
| | - Y Wang
- 2 Agriculture and Agri-Food Canada, Lethbridge Research Center, 5403 1 Ave S, Lethbridge, AB T1J 4P4, Canada
| | - T A McAllister
- 1 Department of Animal Science, University of Manitoba, 12 Dafoe road, Winnipeg, MB R3T 2N2, Canada.,2 Agriculture and Agri-Food Canada, Lethbridge Research Center, 5403 1 Ave S, Lethbridge, AB T1J 4P4, Canada
| | - E Khafipour
- 1 Department of Animal Science, University of Manitoba, 12 Dafoe road, Winnipeg, MB R3T 2N2, Canada.,3 Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
5
|
Krause DO, Nagaraja TG, Wright ADG, Callaway TR. Board-invited review: Rumen microbiology: leading the way in microbial ecology. J Anim Sci 2013; 91:331-41. [PMID: 23404990 DOI: 10.2527/jas.2012-5567] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Robert Hungate, considered the father of rumen microbiology, was the first to initiate a systematic exploration of the microbial ecosystem of the rumen, but he was not alone. The techniques he developed to isolate and identify cellulose-digesting bacteria from the rumen have had a major impact not only in delineating the complex ecosystem of the rumen but also in clinical microbiology and in the exploration of a number of other anaerobic ecosystems, including the human hindgut. Rumen microbiology has pioneered our understanding of much of microbial ecology and has broadened our knowledge of ecology in general, as well as improved the ability to feed ruminants more efficiently. The discovery of anaerobic fungi as a component of the ruminal flora disproved the central dogma in microbiology that all fungi are aerobic organisms. Further novel interactions between bacterial species such as nutrient cross feeding and interspecies H2 transfer were first described in ruminal microorganisms. The complexity and diversity present in the rumen make it an ideal testing ground for microbial theories (e.g., the effects of nutrient limitation and excess) and techniques (such as 16S rRNA), which have rewarded the investigators that have used this easily accessed ecosystem to understand larger truths. Our understanding of characteristics of the ruminal microbial population has opened new avenues of microbial ecology, such as the existence of hyperammonia-producing bacteria and how they can be used to improve N efficiency in ruminants. In this review, we examine some of the contributions to science that were first made in the rumen, which have not been recognized in a broader sense.
Collapse
Affiliation(s)
- D O Krause
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | | |
Collapse
|
6
|
Li S, Gozho GN, Gakhar N, Khafipour E, Krause DO, Plaizier JC. Evaluation of diagnostic measures for subacute ruminal acidosis in dairy cows. CANADIAN JOURNAL OF ANIMAL SCIENCE 2012. [DOI: 10.4141/cjas2012-004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Li, S., Gozho, G. N., Gakhar, N., Khafipour, E., Krause, D. O. and Plaizier, J. C. 2012. Evaluation of diagnostic measures for subacute ruminal acidosis in dairy cows. Can J. Anim. Sci. 92: 353–364. Effects of subacute ruminal acidosis (SARA) challenges on measurements of feces, urine, milk and blood samples, and of feeding behavior were investigated to determine which of these measurements may aid in the diagnosis of SARA. Eight multiparous lactating dairy cows were used in a crossover design with two 6-wk experimental periods. During weeks 1, 2, and 6, cows received a control diet with a forage-to-concentrate ratio of 58:42. During weeks 3 to wk 5, a grain-based SARA challenge (GBSC) or an alfalfa-pellet SARA challenge (APSC) was conducted by replacing 12% of the dry matter of the control ration with pellets containing 50% ground wheat and 50% ground barley, and by replacing 26% of the dry matter of the control ration with pellets of ground alfalfa, respectively. The rumen pH depression did not differ between the challenges. The GBSC increased the concentrations of lipopolysaccharide (LPS) in feces and of serum amyloid A in blood, but decreased that of milk fat and urea in blood. The APSC increased the urine pH, the net-acid-base excretion, and the red blood cell count and potassium concentration in blood. Both challenges increased the concentrations of LPS and propionate in rumen fluid, protein in milk, glucose, lactate and sodium and the partial pressure of CO2in blood, and tended to decrease the concentration of chloride in blood. The measures that were similarly affected by both challenges may aid in the diagnosis of a rumen pH depression. Differences between the SARA challenges suggest that this disorder is not solely rumen pH dependent.
Collapse
Affiliation(s)
- S. Li
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - G. N. Gozho
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - N. Gakhar
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - E. Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - D. O. Krause
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - J. C. Plaizier
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|