1
|
Sánchez-Chapul L, Santamaría A, Aschner M, Ke T, Tinkov AA, Túnez I, Osorio-Rico L, Galván-Arzate S, Rangel-López E. Thallium-induced DNA damage, genetic, and epigenetic alterations. Front Genet 2023; 14:1168713. [PMID: 37152998 PMCID: PMC10157259 DOI: 10.3389/fgene.2023.1168713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Thallium (Tl) is a toxic heavy metal responsible for noxious effects in living organisms. As a pollutant, Tl can be found in the environment at high concentrations, especially in industrial areas. Systemic toxicity induced by this toxic metal can affect cell metabolism, including redox alterations, mitochondrial dysfunction, and activation of apoptotic signaling pathways. Recent focus on Tl toxicity has been devoted to the characterization of its effects at the nuclear level, with emphasis on DNA, which, in turn, may be responsible for cytogenetic damage, mutations, and epigenetic changes. In this work, we review and discuss past and recent evidence on the toxic effects of Tl at the systemic level and its effects on DNA. We also address Tl's role in cancer and its control.
Collapse
Affiliation(s)
- Laura Sánchez-Chapul
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A. Tinkov
- Yaroslavl State University, Medical University (Sechenov University), Moscow, Russia
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba, Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina Y Enfermería, Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Universidad de, Córdoba, Spain
| | - Laura Osorio-Rico
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Sonia Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| |
Collapse
|
2
|
Garcia-Morante B, Maes D, Sibila M, Betlach AM, Sponheim A, Canturri A, Pieters M. Improving Mycoplasma hyopneumoniae diagnostic capabilities by harnessing the infection dynamics. Vet J 2022; 288:105877. [PMID: 35901923 DOI: 10.1016/j.tvjl.2022.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022]
Abstract
Mycoplasma hyopneumoniae remains one of the most problematic bacterial pathogens for pig production. Despite an abundance of observational and laboratory testing capabilities for this organism, diagnostic interpretation of test results can be challenging and ambiguous. This is partly explained by the chronic nature of M. hyopneumoniae infection and its tropism for lower respiratory tract epithelium, which affects diagnostic sensitivities associated with sampling location and stage of infection. A thorough knowledge of the available tools for routine M. hyopneumoniae diagnostic testing, together with a detailed understanding of infection dynamics, are essential for optimizing sampling strategies and providing confidence in the diagnostic process. This study reviewed known information on sampling and diagnostic tools for M. hyopneumoniae and summarized literature reports of the dynamics of key infection outcomes, including clinical signs, lung lesions, pathogen detection, and humoral immune responses. Such knowledge could facilitate better understanding of the performance of different diagnostic approaches at various stages of infection.
Collapse
Affiliation(s)
- Beatriz Garcia-Morante
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Unit Porcine Health Management, Ghent University, Salisburylaan, 133 B-9820 Merelbeke, Belgium
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alyssa M Betlach
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Swine Vet Center, 1608 S Minnesota Ave, St. Peter, MN 56082, USA
| | - Amanda Sponheim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Boehringer Ingelheim Animal Health USA Inc., 3239 Satellite Blvd NW, Duluth, GA 30096, USA
| | - Albert Canturri
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA
| | - Maria Pieters
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St. Paul, MN 55108, USA; Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, St Paul, 55108 MN, USA; Swine Disease Eradication Center, College of Veterinary Medicine, University of Minnesota, 1988 Fitch Ave, St. Paul, MN 55108, USA.
| |
Collapse
|
3
|
Gaurivaud P, Tardy F. The Mycoplasma spp. ‘Releasome’: A New Concept for a Long-Known Phenomenon. Front Microbiol 2022; 13:853440. [PMID: 35495700 PMCID: PMC9051441 DOI: 10.3389/fmicb.2022.853440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The bacterial secretome comprises polypeptides expressed at the cell surface or released into the extracellular environment as well as the corresponding secretion machineries. Despite their reduced coding capacities, Mycoplasma spp. are able to produce and release several components into their environment, including polypeptides, exopolysaccharides and extracellular vesicles. Technical difficulties in purifying these elements from the complex broth media used to grow mycoplasmas have recently been overcome by optimizing growth conditions and switching to chemically defined culture media. However, the secretion pathways responsible for the release of these structurally varied elements are still poorly described in mycoplasmas. We propose the use of the term ‘releasome,’ instead of secretome, to refer to molecules released by mycoplasmas into their environment. The aim of this review is to more precisely delineate the elements that should be considered part of the mycoplasmal releasome and their role in the interplay of mycoplasmas with host cells and tissues.
Collapse
|
4
|
Qiu G, Rui Y, Yi B, Liu T, Hao Z, Li X, Zhang L, Huang S, Li K, Han Z. Identification and Genomic Analysis of a Pathogenic Strain of Mycoplasma hyopneumoniae (TB1) Isolated from Tibetan Pigs. DNA Cell Biol 2019; 38:922-932. [PMID: 31329463 DOI: 10.1089/dna.2018.4560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study aims to identify the species and strains of Mycoplasma hyopneumoniae isolated from Tibetan pigs (Mh TB1) at the genetic level for understanding the basis of its pathogenicity. Mh TB1 was isolated from the consolidated lungs of Tibetan pigs by liquid culture and agar plate colony method. Polymerase chain reaction (PCR) amplification of the 16S recombinant DNA (rDNA) conservative sequence and a species-specific gene (P36) of Mh provided species confirmation. PCR products were imaged on gels and shotgun sequencing was performed. DNA sequences were compared for assessing genetic similarity between Mh TB1 and Mh reference strains in the GenBank database. The isolated strains were >98% similar to the Mh reference strains. Genomic analysis revealed significant sequence conservation between Mh TB1 and the reference strains; however, differential genes were more prevalent in Mh TB1 than in other reported strains. Therefore, we concluded that Mh is a major pathogen of Tibetan pigs that cause enzootic pneumonia. The Mh TB1 strain harbors more genes and specific virulence factors, consistent with its plateau-related adaptability to hypoxia and virulence. Differential gene analysis revealed gene variations in the inclement plateau environment, enriched gene pool, and plateau adaptability of the Mh TB1 strain, which will be important for vaccine development.
Collapse
Affiliation(s)
- Gang Qiu
- Department of Animal Husbandry and Veterinary Engineering, Xinyang Agriculture and Forestry University, Xinyang, People's Republic of China
| | - Yapei Rui
- Department of Animal Husbandry and Veterinary Engineering, Xinyang Agriculture and Forestry University, Xinyang, People's Republic of China
| | - Benchi Yi
- Department of Animal Husbandry and Veterinary Engineering, Xinyang Agriculture and Forestry University, Xinyang, People's Republic of China
| | - Tao Liu
- Department of Animal Husbandry and Veterinary Engineering, Xinyang Agriculture and Forestry University, Xinyang, People's Republic of China
| | - Zhaojing Hao
- Department of Animal Science, Tibet Agriculture and Animal Husbandry College, Tibet, People's Republic of China
| | - Xiang Li
- Department of Animal Science, Tibet Agriculture and Animal Husbandry College, Tibet, People's Republic of China
| | - Lihong Zhang
- Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shucheng Huang
- Department of Animal Science and Veterinary Medicine, Henan Agriculture University, Zhengzhou, People's Republic of China
| | - Kun Li
- Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Zhaoqing Han
- Department of Agriculture and Forestry Science, Linyi University, Linyi, People's Republic of China
| |
Collapse
|
5
|
Cesur MF, Abdik E, Güven-Gülhan Ü, Durmuş S, Çakır T. Computational Systems Biology of Metabolism in Infection. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:235-282. [PMID: 30535602 DOI: 10.1007/978-3-319-74932-7_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A systems approach to elucidate the effect of infection on cell metabolism provides several opportunities from a better understanding of molecular mechanisms to the identification of potential biomarkers and drug targets. This is obvious from the fact that we have witnessed the accelerated use of computational systems biology in the last five years to study metabolic changes in pathogen and/or host cells in response to infection. In this chapter, we aim to present a comprehensive review of the recent research by focusing on genome-scale metabolic network models of pathogen-host systems and genome-wide metabolomics and fluxomics analysis of infected cells.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ecehan Abdik
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ünzile Güven-Gülhan
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Saliha Durmuş
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
6
|
TASSEW DD, MECHESSO AF, PARK NH, SONG JB, SHUR JW, PARK SC. Biofilm formation and determination of minimum biofilm eradication concentration of antibiotics in Mycoplasma hyopneumoniae. J Vet Med Sci 2017; 79:1716-1720. [PMID: 28890520 PMCID: PMC5658566 DOI: 10.1292/jvms.17-0279] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/25/2017] [Indexed: 12/05/2022] Open
Abstract
The study was aimed to investigate biofilm forming ability of Mycoplasma hyopneumoniae and to determine the minimum biofilm eradication concentrations of antibiotics. Biofilm forming ability of six strains of M. hyopneumoniae was examined using crystal violet staining on coverslips. The results demonstrated an apparent line of biofilm growth in 3 of the strains isolated from swine with confirmed cases of enzootic pneumonia. BacLight bacterial viability assay revealed that the majority of the cells were viable after 336 hr of incubation. Moreover, M. hyopneumoniae persists in the biofilm after being exposed to 10 fold higher concentration of antibiotics than the minimum inhibitory concentrations in planktonic cells. To the best of our knowledge, this is the first report of biofilm formation in M. hyopneumoniae. However, comprehensive studies on the mechanisms of biofilm formation are needed to combat swine enzootic pneumonia caused by resistant M. hyopneumoniae.
Collapse
Affiliation(s)
- Dereje Damte TASSEW
- College of Veterinary Medicine, Kyungpook National
University, 41566, Bukgu, Daegu, South Korea
- Lovelace Respiratory Research Institute, Albuquerque, NM
87108, U.S.A
| | - Abraham Fikru MECHESSO
- College of Veterinary Medicine, Kyungpook National
University, 41566, Bukgu, Daegu, South Korea
| | - Na-Hye PARK
- College of Veterinary Medicine, Kyungpook National
University, 41566, Bukgu, Daegu, South Korea
| | - Ju-Beom SONG
- Department of Chemistry Education, Kyungpook National
University, 41566, Bukgu, Daegu, South Korea
| | - Joo-Woon SHUR
- Center for Nutraceutical and Pharmaceutical Materials,
Division of Bioscience and Bioinformatics, Science Campus, Myongji University, 449-728,
Yongin, Gyeonggi, Republic of Korea
| | - Seung-Chun PARK
- College of Veterinary Medicine, Kyungpook National
University, 41566, Bukgu, Daegu, South Korea
| |
Collapse
|
7
|
Mukherjee S, Mukherjee N, Roy P, Saini P, Sinha Babu SP. An approach toward optimization of the influential growth determinants of opportunistic yeast isolatePichia guilliermondii. Prep Biochem Biotechnol 2015; 46:440-5. [DOI: 10.1080/10826068.2015.1045614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Abdel-Daim MM, Abdou RH. Protective Effects of Diallyl Sulfide and Curcumin Separately against Thallium-Induced Toxicity in Rats. CELL JOURNAL 2015. [PMID: 26199917 PMCID: PMC4503852 DOI: 10.22074/cellj.2016.3752] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Thallium acetate (TI) is a cumulative poison intimately accompanied by an increase in reactive oxygen species (ROS) formation that represents an important risk factor for tissue injury and malfunction. This study aims to determine the possible hepatoprotective and antioxidant effects of diallyl sulfide (DAS) from garlic and curcumin from turmeric against TI-induced liver injury and oxidative stress (OS) in rats. This in vivo animal study divided rats into six groups of 8 rats per group. The first group received saline and served as the control group. The second and third groups received DAS or curcumin only at a dose of 200 mg/kg. The fourth group received TI at a dose of 6.4 mg/kg for 5 consecutive days. The fifth and sixth groups received DAS or curcumin orally 1 hour before TI intoxication at the same dose as the second and third groups. Liver integrity serum enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and γ-glutamyltransferase (γ-GT) were evaluated. Serum and liver tissue homogenate lipid peroxidation and OS biomarkers were measured. The data were analyzed by one-way ANOVA followed by Duncan's multiple range test for post hoc analysis using SPSS version 16. TI induced marked oxidative liver damage as shown by significantly (P≤0.05) elevated serum AST, ALT, ALP, LDH and γ-GT levels. There were significant (P≤0.05) increases in serum and hepatic malondialdehyde (MDA) and serum nitric oxide (NO) as well as decreased hepatic glutathione (GSH) and catalase (CAT) activities. There were significantly (P≤0.05) less serum and hepatic superoxide dismutase (SOD) and total antioxidant capacity (TAC). Pre-treatment with DAS or curcumin ameliorated the changes in most studied biochemical parameters. DAS and curcumin effectively reduced TI-induced liver toxicity.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Rania H Abdou
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|