1
|
Hu Z, Luo Y, Ni R, Hu Y, Yang F, Du T, Zhu Y. Biological importance of human amniotic membrane in tissue engineering and regenerative medicine. Mater Today Bio 2023; 22:100790. [PMID: 37711653 PMCID: PMC10498009 DOI: 10.1016/j.mtbio.2023.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
The human amniotic membrane (hAM) is the innermost layer of the placenta. Its distinctive structure and the biological and physical characteristics make it a highly biocompatible material in a variety of regenerative medicine applications. It also acts as a supply of bioactive factors and cells, which indicate the advantages over other tissues. In this review, we firstly discussed the biological properties of hAM-derived cells in vivo or in vitro, along with their stemness of markers, pointing out a promising source of stem cells for regenerative medicine. Then, we systematically summarized current knowledge on the collection, preparation, preservation, and decellularization of hAM, as well as their characteristics helping to improve the understanding of applications in tissue engineering. Finally, we highlighted the recent advances in which hAM has undergone additional modifications to achieve an adequate perspective of regenerative medicine applications. More investigations are required in utilizing appropriate modifications to enhance the therapeutic effectiveness of hAM in the future.
Collapse
Affiliation(s)
- Zeming Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
2
|
Rezayat F, Esmaeil N, Rezaei A. Potential Therapeutic Effects of Human Amniotic Epithelial Cells on Gynecological Disorders Leading to Infertility or Abortion. Stem Cell Rev Rep 2023; 19:368-381. [PMID: 36331801 DOI: 10.1007/s12015-022-10464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
The induction of feto-maternal tolerance, fetal non-immunogenicity, and the regulation of mother's immune system are essential variables in a successful pregnancy. Fetal membranes have been used as a source of stem cells and biological components in recent decades. Human amniotic epithelial cells (hAEC) have stem/progenitor characteristics like those found in the amniotic membrane. Based on their immunomodulatory capabilities, recent studies have focused on the experimental and therapeutic applications of hAECs in allograft transplantation, autoimmune disorders, and gynecological problems such as recurrent spontaneous abortion (RSA), recurrent implantation failure (RIF), and premature ovarian failure (POF). This review discusses some of the immunomodulatory features and therapeutic potential of hAECs in preventing infertility, miscarriage, and implantation failure by controlling the maternal immune system.
Collapse
Affiliation(s)
- Fatemeh Rezayat
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Immunology, School of Medicine, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran.
| | - Abbas Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Fathi I, Miki T. Human Amniotic Epithelial Cells Secretome: Components, Bioactivity, and Challenges. Front Med (Lausanne) 2022; 8:763141. [PMID: 35083233 PMCID: PMC8784524 DOI: 10.3389/fmed.2021.763141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Human amniotic epithelial cells (hAECs) derived from placental tissue have received significant attention as a promising tool in regenerative medicine. Several studies demonstrated their anti-inflammatory, anti-fibrotic, and tissue repair potentials. These effects were further shown to be retained in the conditioned medium of hAECs, suggesting their paracrine nature. The concept of utilizing the hAEC-secretome has thus evolved as a therapeutic cell-free option. In this article, we review the different components and constituents of hAEC-secretome and their influence as demonstrated through experimental studies in the current literature. Studies examining the effects of conditioned medium, exosomes, and micro-RNA (miRNA) derived from hAECs are included in this review. The challenges facing the application of this cell-free approach will also be discussed based on the current evidence.
Collapse
Affiliation(s)
- Ibrahim Fathi
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Toshio Miki
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Ravani RD, Yadav S, Takkar B, Sen S, Kashyap S, Gupta D, Jassal M, Agrawal A, Mohanty S, Tandon R. Experimental evaluation of safety and efficacy of plasma-treated poly-ε-caprolactone membrane as a substitute for human amniotic membrane in treating corneal epithelial defects in rabbit eyes. Indian J Ophthalmol 2021; 69:2412-2416. [PMID: 34427233 PMCID: PMC8544092 DOI: 10.4103/ijo.ijo_2986_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Purpose: To evaluate biocompatibility and safety of plasma-treated poly-ε-caprolactone (pPCL) membrane compared to the human amniotic membrane in the healing of corneal epithelial defects in an experimental model. Methods: This is a prospective, randomized animal study including 12 rabbits. Circular epithelial injury measuring 6 mm in diameter was induced over the central cornea of one eye in twelve rabbits. The rabbits were randomized into two groups; in group A, the defect was covered with human amniotic membrane, while in group B, an artificial membrane made of bio-polymer plasma-treated poly-ε-caprolactone was grafted. Six rabbits were euthanized after 1 month and the other six after 3 months and the corneal epithelium was evaluated histopathologically and with immunohistochemistry. Results: Light microscopy of the corneal tissue performed after 1 month and 3 months demonstrated similar findings with no significant complications in either group. Immunohistochemistry with anti-CK-3 antibody showed characteristic corneal phenotype in the healed epithelium. In eyes grafted with pPCL membrane, epithelial healing as estimated by a decrease in size of the defect was significantly better than the group treated with the human amniotic membrane at all time periods monitored (P < 0.05), except day 1 (P = 0.83). The percentage reduction in the size of the epithelial defect was also significantly more in the pPCL membrane group as compared to the human amniotic membrane at all time periods (P < 0.05 at all observations) post-implantation except day 1 (P = 0.73). Conclusion: Plasma-treated poly-ε-caprolactone membrane is safe, biocompatible, and effective in the healing of corneal epithelial defects in rabbits.
Collapse
Affiliation(s)
- Raghav D Ravani
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Saumya Yadav
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Brijesh Takkar
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Sen
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Kashyap
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Deepika Gupta
- SMITA Research Labs, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Manjeet Jassal
- SMITA Research Labs, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Ashwini Agrawal
- SMITA Research Labs, Department of Textile Technology, Indian Institute of Technology, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Radhika Tandon
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Kynurenic Acid Accelerates Healing of Corneal Epithelium In Vitro and In Vivo. Pharmaceuticals (Basel) 2021; 14:ph14080753. [PMID: 34451850 PMCID: PMC8398234 DOI: 10.3390/ph14080753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Kynurenic acid (KYNA) is an endogenous compound with a multidirectional effect. It possesses antiapoptotic, anti-inflammatory, and antioxidative properties that may be beneficial in the treatment of corneal injuries. Moreover, KYNA has been used successfully to improve the healing outcome of skin wounds. The aim of the present study is to evaluate the effects of KYNA on corneal and conjunctival cells in vitro and the re-epithelization of corneal erosion in rabbits in vivo. Normal human corneal epithelial cell (10.014 pRSV-T) and conjunctival epithelial cell (HC0597) lines were used. Cellular metabolism, cell viability, transwell migration, and the secretion of IL-1β, IL-6, and IL-10 were determined. In rabbits, after corneal de-epithelization, eye drops containing 0.002% and 1% KYNA were applied five times a day until full recovery. KYNA decreased metabolism but did not affect the proliferation of the corneal epithelium. It decreased both the metabolism and proliferation of conjunctival epithelium. KYNA enhanced the migration of corneal but not conjunctival epithelial cells. KYNA reduced the secretion of IL-1β and IL-6 from the corneal epithelium, leaving IL-10 secretion unaffected. The release of all studied cytokines from the conjunctival epithelium exposed to KYNA was unchanged. KYNA at higher concentration accelerated the healing of the corneal epithelium. These favorable properties of KYNA suggest that KYNA containing topical pharmaceutical products can be used in the treatment of ocular surface diseases.
Collapse
|
6
|
Matysik-Woźniak A, Turski WA, Turska M, Paduch R, Łańcut M, Piwowarczyk P, Czuczwar M, Rejdak R. Tryptophan as a Safe Compound in Topical Ophthalmic Medications: In Vitro and In Vivo Studies. Ocul Immunol Inflamm 2021; 30:940-950. [PMID: 33616466 DOI: 10.1080/09273948.2020.1856883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: To evaluate the effects of tryptophan (TRP) on normal human corneal and conjunctival epithelium in vitro and the re-epithelization of corneal erosion in rabbits.Materials and methods: Corneal epithelial cell (10.014 pRSV-T) and conjunctival epithelial cell (HC0597) cultures were used. The cellular metabolism, viability, secretion of IL-1β, IL-6, IL-10, cytoskeleton organization, transwell migration were determined. Cells were incubated in the presence of TRP at 1-100 μM. After corneal de-epithelization rabbits received TRP drops (100 μM), 5 times a day.Results: TRP increased conjunctival epithelium metabolism at 50 μM and increased the viability of corneal epithelium at 100 μM. TRP (10 μM) enhanced the production of IL-6 by the corneal epithelium and had no effect on IL-1β and IL-10.Conclusions: TRP had no influence on the cellular cytoskeleton but induced a significant pseudopodia projection in both epithelia. TRP did not influence corneal re-epithelization in vivo. TRP was not toxic for corneal and conjunctival epithelia.
Collapse
Affiliation(s)
- Anna Matysik-Woźniak
- Department of General Ophthalmology, Medical University of Lublin, Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Monika Turska
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland.,School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Roman Paduch
- Department of General Ophthalmology, Medical University of Lublin, Lublin, Poland.,Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Mirosław Łańcut
- Center for Experimental Medicine, Medical University of Lublin, Lublin, Poland
| | - Paweł Piwowarczyk
- 2nd Department of Anesthesiology and Intensive Care Unit, Medical University of Lublin, Lublin, Poland
| | - Mirosław Czuczwar
- 2nd Department of Anesthesiology and Intensive Care Unit, Medical University of Lublin, Lublin, Poland
| | - Robert Rejdak
- Department of General Ophthalmology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
Bai X, Liu J, Yuan W, Liu Y, Li W, Cao S, Yu L, Wang L. Therapeutic Effect of Human Amniotic Epithelial Cells in Rat Models of Intrauterine Adhesions. Cell Transplant 2021; 29:963689720908495. [PMID: 32223314 PMCID: PMC7444214 DOI: 10.1177/0963689720908495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As a refractory fibrosis disease, intrauterine adhesions (IUAs) is defined as
fibrosis of the physiological endometrium. Although hysteroscopic adhesiolysis
is widely recommended as an effective treatment, prognosis and recurrence remain
poor in severe cases. Recently, stem cell therapy has been promoted as a
promising treatment for IUAs. The ability of human amniotic epithelial cells
(hAECs), emerging as a new candidate for stem cell therapy, to treat IUAs has
not been demonstrated. To study the potential effects of hAECs on IUAs, we
created an IUA rat model using mechanical injury and injected cultured primary
hAECs into the rats’ uteri. Next, we observed the morphological structure of
endometrial thickness and glands using hematoxylin and eosin staining, and we
detected extracellular-matrix collagen deposition using Masson staining. In
addition, we performed immunohistochemical staining and reverse-transcription
polymerase chain reaction (RT-PCR) to investigate potential fibrosis molecules
and angiogenesis factors 7 d after hAECs transplantation. Finally, we detected
estrogen receptor (ER) and growth factors via RT-PCR to verify the molecular
mechanism underlying cell therapy. In the IUA rat models, endometrial thickness
and endometrial glands proliferated and collagen deposition decreased
significantly after hAEC transplantation. We found that during the recovery of
injured endometrium, the crucial fibrosis marker transforming growth factor-β
(TGF-β) was regulated and angiogenesis occurred in the endometrial tissue with
the up-regulation of vascular endothelial growth factor. Furthermore, hAECs were
shown to promote ER expression in the endometrium and regulate the inflammatory
reaction in the uterine microenvironment. In conclusion, these results
demonstrated that hAEC transplantation could inhibit the progression of fibrosis
and promote proliferation and angiogenesis in IUA rat models. The current study
suggests hAECs as a novel stem cell candidate in the treatment of severe
IUA.
Collapse
Affiliation(s)
- Xuechai Bai
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jia Liu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Hangzhou, People's Republic of China.,Shanghai iCELL Biotechnology Co Ltd, Shanghai, People's Republic of China
| | - Weixin Yuan
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Hangzhou, People's Republic of China
| | - Yang Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wei Li
- Department of Gynecology, Ningbo Yinzhou People's Hospital, Ningbo, People's Republic of China
| | - Siyu Cao
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Luyang Yu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Hangzhou, People's Republic of China
| | - Liang Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
8
|
Zhang Q, Lai D. Application of human amniotic epithelial cells in regenerative medicine: a systematic review. Stem Cell Res Ther 2020; 11:439. [PMID: 33059766 PMCID: PMC7559178 DOI: 10.1186/s13287-020-01951-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Human amniotic epithelial cells (hAECs) derived from placental tissues have gained considerable attention in the field of regenerative medicine. hAECs possess embryonic stem cell-like proliferation and differentiation capabilities, and adult stem cell-like immunomodulatory properties. Compared with other types of stem cell, hAECs have special advantages, including easy isolation, plentiful numbers, the obviation of ethical debates, and non-immunogenic and non-tumorigenic properties. During the past two decades, the therapeutic potential of hAECs for treatment of various diseases has been extensively investigated. Accumulating evidence has demonstrated that hAEC transplantation helps to repair and rebuild the function of damaged tissues and organs by different molecular mechanisms. This systematic review focused on summarizing the biological characteristics of hAECs, therapeutic applications, and recent advances in treating various tissue injuries and disorders. Relevant studies published in English from 2000 to 2020 describing the role of hAECs in diseases and phenotypes were comprehensively sought out using PubMed, MEDLINE, and Google Scholar. According to the research content, we described the major hAEC characteristics, including induced differentiation plasticity, homing and differentiation, paracrine function, and immunomodulatory properties. We also summarized the current status of clinical research and discussed the prospects of hAEC-based transplantation therapies. In this review, we provide a comprehensive understanding of the therapeutic potential of hAECs, including their use for cell replacement therapy as well as secreted cytokine and exosome biotherapy. Moreover, we showed that the powerful immune-regulatory function of hAECs reveals even more possibilities for their application in the treatment of immune-related diseases. In the future, establishing the optimal culture procedure, achieving precise and accurate treatment, and enhancing the therapeutic potential by utilizing appropriate preconditioning and/or biomaterials would be new challenges for further investigation.
Collapse
Affiliation(s)
- Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Key Laboratory of Embryo Original Diseases; Shanghai Municipal Key Clinical Speciality, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Key Laboratory of Embryo Original Diseases; Shanghai Municipal Key Clinical Speciality, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
9
|
Gottipamula S, Sundarrajan S, Chokalingam K, Sridhar KN. The effect of human amniotic epithelial cells on urethral stricture fibroblasts. J Clin Transl Res 2019; 5:44-49. [PMID: 31579841 PMCID: PMC6765151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Urethral stricture disease (USD) is effectively managed by buccal mucosa (BM) urethroplasty. Lack of adequate healthy BM has led to the use of autologous tissue-engineered BM grafts. Such grafts are costly, not easily scalable and recurrence of the stricture is still a problem. Hence, there is a requirement for cost-effective, scalable cells with innate antifibrotic properties which seem to be fulfilled by human amniotic epithelial cells (HAMECs). The effect of HAMECs on USD is unknown. AIM To study the effect of HAMECs-CM on human urethral stricture fibroblast (USF) cells by using in-vitro migration assay and molecular techniques. MATERIALS AND METHODS USF cells were derived from six patients undergoing urethroplasty. HAMECs were derived from one placenta after delivery. The effect of HAMECs-CM on USF cell migration was observed using a standard in vitro scratch assay over a period of 3 days. The effect of HAMECs-CM on the expression levels of markers alpha-smooth muscle actin (α-SMA) and tissue inhibitor of metalloproteinases (TIMP-1) in USF cells was also examined. RESULTS The HAMECs-CM suppressed the migration of USF cells in in vitro scratch assay. The HAMECs-CM consistently downregulated α-SMA, but not TIMP-1. CONCLUSIONS HAMECs have shown antifibrotic activity on USF cells in this in vitro study. RELEVANCE FOR PATIENTS HAMECs could serve as an alternative cell source for tissue-engineered urethroplasty.
Collapse
Affiliation(s)
- Sanjay Gottipamula
- 1Sri Research for Tissue Engineering Pvt. Ltd., Shankara Research Centre, Bengaluru, Karnataka, India
| | - Sudarson Sundarrajan
- 2Cancyte Technologies Pvt. Ltd., Rangadore Memorial Hospital, Bengaluru, Karnataka, India
| | - Kumar Chokalingam
- 1Sri Research for Tissue Engineering Pvt. Ltd., Shankara Research Centre, Bengaluru, Karnataka, India
| | - K. N. Sridhar
- 1Sri Research for Tissue Engineering Pvt. Ltd., Shankara Research Centre, Bengaluru, Karnataka, India,2Cancyte Technologies Pvt. Ltd., Rangadore Memorial Hospital, Bengaluru, Karnataka, India,Corresponding author: K. N. Sridhar Sri Research for Tissue Engineering Pvt. Ltd., Sri Shankara Research Center, Rangadore Memorial Hospital, 1st Cross, Shankarapuram, Bengaluru-560 004, Karnataka, India Tel: +91-80-41076759
| |
Collapse
|
10
|
Zhang Q, Bu S, Sun J, Xu M, Yao X, He K, Lai D. Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage. Stem Cell Res Ther 2017; 8:270. [PMID: 29179771 PMCID: PMC5704397 DOI: 10.1186/s13287-017-0721-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/27/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022] Open
Abstract
Background Human amniotic epithelial cells (hAECs) are attractive candidates for regenerative medical therapy, with the potential to replace deficient cells and improve functional recovery after injury. Previous studies have demonstrated that transplantation of hAECs effectively alleviate chemotherapy-induced ovarian damage via inhibiting granulose cells apoptosis in animal models of premature ovarian failure/insufficiency (POF/POI). However, the underlying molecular mechanism accounting for hAECs-mediated ovarian function recovery is not fully understood. Methods To investigate whether hAECs-secreting cytokines act as molecular basis to attenuate chemotherapy-induced ovarian injury, hAECs or hAEC-conditioned medium (hAEC-CM) was injected into the unilateral ovary of POF/POI mouse. Follicle development was evaluated by H&E staining at 1, 2 months after hAECs or hAEC-CM treatment. In addition, we performed a cytokine array containing 507 human cytokines on hAECs-derived serum-free conditioned medium. Finally, we further investigated whether hAECs could affect chemotherapy-induced apoptosis in primary human granulosa-lutein (hGL) cells and the tube formation of human umbilical vein endothelial cells (hUVECs) via a co-culture system in vitro. Results We observed the existence of healthy and mature follicles in ovaries treated with hAECs or hAEC-CM, whereas seriously fibrosis and many atretic follicles were found in the contralateral untreated ovaries of the same mouse. To distinguish cytokines involved in the process of hAECs-restored ovarian function, hAEC-CM was analyzed with a human cytokines array. Results revealed that 109 cytokines in hAEC-CM might participate in a variety of biological processes including apoptosis, angiogenesis, cell cycle and immune response. In vitro experiments, hAECs significantly inhibited chemotherapy-induced apoptosis and activated TGF-β/Smad signaling pathway within primary granulosa-lutein cells in paracrine manner. Furthermore, hAEC-CM was shown to promote angiogenesis in the injured ovaries and enhance the tube formation of human umbilical vein endothelial cells (hUVECs) in co-culture system. Conclusions These findings demonstrated that paracrine might be a key pathway in the process of hAECs-mediating ovarian function recovery in animal models of premature ovarian failure/insufficiency (POF/POI). Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0721-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiuwan Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Shixia Bu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China
| | - Junyan Sun
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China
| | - Minhua Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China
| | - Xiaofen Yao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China
| | - Kunyan He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Dongmei Lai
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 145, Guang-Yuan Road, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
11
|
Regenerative Therapies in Dry Eye Disease: From Growth Factors to Cell Therapy. Int J Mol Sci 2017; 18:ijms18112264. [PMID: 29143779 PMCID: PMC5713234 DOI: 10.3390/ijms18112264] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/09/2017] [Accepted: 10/28/2017] [Indexed: 02/07/2023] Open
Abstract
Dry eye syndrome is a complex and insidious pathology with a high level of prevalence among the human population and with a consequently high impact on quality of life and economic cost. Currently, its treatment is symptomatic, mainly based on the control of lubrication and inflammation, with significant limitations. Therefore, the latest research is focused on the development of new biological strategies, with the aim of regenerating affected tissues, or at least restricting the progression of the disease, reducing scar tissue, and maintaining corneal transparency. Therapies range from growth factors and cytokines to the use of different cell sources, in particular mesenchymal stem cells, due to their multipotentiality, trophic, and immunomodulatory properties. We will review the state of the art and the latest advances and results of these promising treatments in this pathology.
Collapse
|
12
|
Zhang H, Lin S, Zhang M, Li Q, Li W, Wang W, Zhao M, Xie Y, Li Z, Huang M, Wang Z, Zhang X, Huang B. Comparison of Two Rabbit Models with Deficiency of Corneal Epithelium and Limbal Stem Cells Established by Different Methods. Tissue Eng Part C Methods 2017; 23:710-717. [PMID: 28816624 DOI: 10.1089/ten.tec.2017.0146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Limbal stem cell defect model is an important animal model that provides a basis for the study of ocular surface diseases. The rabbit cornea is of moderate size and is widely used in such studies as an experimental animal model. At present, the main modeling methods are alkali burns, and corneal limbus girdling and corneal epithelium doctoring. Each method has its own characteristics. In this study, we observed rabbit models with severe ocular surface defect established by the two methods and changes after amniotic membrane transplantation. In the first, second, third, and fourth week after operation, the clinical manifestations, corneal transparency, and new vessels were observed according to the standard rating scale of ocular surface, compared between the two methods, and then statistically analyzed. In the fourth week after operation, the rabbits were sacrificed and their corneas and corneal limbus were extracted from sclera, embedded by optimum cutting temperature compound, frozen, and sliced for hematoxylin and eosin staining and pathological examination. There were two groups in this study. Group 1 (alkali burns) had more severe complications, such as, conjunctiva, nubecula, new vessel hyperplasia, and so on, compared to group 2 (corneal limbus girdling and corneal epithelium doctoring). In addition, there were striking differences in corneal transparency and new vessels between the two groups (p < 0.05). Corneal transparency in group 1 was lower than in group 2. New vessels in group 1 were less in the first 2 weeks, but obviously increased compared to group 2 in the subsequent weeks. Alkaline burn could be used to study new vessel hyperplasia, while corneal limbus girdling and corneal epithelium doctoring are more suitable for studying stem cell transdifferentiation, interactive roles of stem cells and microenvironment, and so on.
Collapse
Affiliation(s)
- Hening Zhang
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Shaochun Lin
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Min Zhang
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Qijiong Li
- 2 Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center , Guangzhou, China
| | - Weihua Li
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Wencong Wang
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Minglei Zhao
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Yaojue Xie
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Zhiquan Li
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | | | - Zhichong Wang
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Xiulan Zhang
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| | - Bing Huang
- 1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
13
|
Silini AR, Magatti M, Cargnoni A, Parolini O. Is Immune Modulation the Mechanism Underlying the Beneficial Effects of Amniotic Cells and Their Derivatives in Regenerative Medicine? Cell Transplant 2016; 26:531-539. [PMID: 27938500 DOI: 10.3727/096368916x693699] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Regenerative medicine aims to repair and regenerate damaged cells, tissues, and organs in order to restore function. Regeneration can be obtained either by cell replacement or by stimulating the body's own repair mechanisms. Importantly, a favorable environment is required before any regenerative signal can stimulate resident stem/stromal cells, and regeneration is possible only after the resolution of injury-induced inflammation. An exacerbated immune response is often present in cases of degenerative, inflammatory-based diseases. Here we discuss how amniotic membrane cells, and their derivatives, can contribute to the resolution of many diseases with altered immune response by acting on different inflammatory mediators.
Collapse
|