1
|
Cui J, Wang TJ, Zhang YX, She LZ, Zhao YC. Molecular biological mechanisms of radiotherapy-induced skin injury occurrence and treatment. Biomed Pharmacother 2024; 180:117470. [PMID: 39321513 DOI: 10.1016/j.biopha.2024.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
Radiotherapy-Induced Skin Injury (RISI) is radiation damage to normal skin tissue that primarily occurs during tumor Radiotherapy and occupational exposure. The risk of RISI is high due to the fact that the skin is not only the first body organ that ionizing radiation comes into contact with, but it is also highly sensitive to it, especially the basal cell layer and capillaries. Typical clinical manifestations of RISI include erythema, dry desquamation, moist desquamation, and ulcers, which have been established to significantly impact patient care and cancer treatment. Notably, our current understanding of RISI's pathological mechanisms and signaling pathways is inadequate, and no standard treatments have been established. Radiation-induced oxidative stress, inflammatory responses, fibrosis, apoptosis, and cellular senescence are among the known mechanisms that interact and promote disease progression. Additionally, radiation can damage all cellular components and induce genetic and epigenetic changes, which play a crucial role in the occurrence and progression of skin injury. A deeper understanding of these mechanisms and pathways is crucial for exploring the potential therapeutic targets for RISI. Therefore, in this review, we summarize the key mechanisms and potential treatment methods for RISI, offering a reference for future research and development of treatment strategies.
Collapse
Affiliation(s)
- Jie Cui
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Tie-Jun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Yu-Xuan Zhang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Li-Zhen She
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Yue-Chen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
2
|
Anikina VA, Sorokina SS, Shemyakov AE, Zamyatina EA, Taskaeva IS, Teplova PO, Popova NR. An Experimental Model of Proton-Beam-Induced Radiation Dermatitis In Vivo. Int J Mol Sci 2023; 24:16373. [PMID: 38003561 PMCID: PMC10671732 DOI: 10.3390/ijms242216373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Radiation dermatitis (RD) is one of the most common side effects of radiation therapy. However, to date, there is a lack of both specific treatments for RD and validated experimental animal models with the use of various sources of ionizing radiation (IR) applied in clinical practice. The aim of this study was to develop and validate a model of acute RD induced using proton radiation in mice. Acute RD (Grade 2-4) was obtained with doses of 30, 40, and 50 Gy, either with or without depilation. The developed model of RD was characterized by typical histological changes in the skin after irradiation. Moreover, the depilation contributed to a skin histology alteration of the irradiated mice. The assessment of animal vital signs indicated that there was no effect of proton irradiation on the well-being or general condition of the animals. This model can be used to develop effective therapeutic agents and study the pathogenesis of radiation-induced skin toxicity, including that caused by proton irradiation.
Collapse
Affiliation(s)
- Viktoriia A. Anikina
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino 142290, Russia; (V.A.A.); (S.S.S.); (A.E.S.); (E.A.Z.)
| | - Svetlana S. Sorokina
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino 142290, Russia; (V.A.A.); (S.S.S.); (A.E.S.); (E.A.Z.)
| | - Alexander E. Shemyakov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino 142290, Russia; (V.A.A.); (S.S.S.); (A.E.S.); (E.A.Z.)
- Branch “Physical-Technical Center” of P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 2 Akademichesky Proezd, Protvino 142281, Russia
| | - Elizaveta A. Zamyatina
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino 142290, Russia; (V.A.A.); (S.S.S.); (A.E.S.); (E.A.Z.)
| | - Iuliia S. Taskaeva
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2 Timakova St., Novosibirsk 630060, Russia;
| | - Polina O. Teplova
- Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino 142290, Russia;
| | - Nelli R. Popova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino 142290, Russia; (V.A.A.); (S.S.S.); (A.E.S.); (E.A.Z.)
| |
Collapse
|
3
|
Zhao Y, Wang H, Li Y, Yang X, Li Y, Wang T. The action of topical application of Vitamin B 12 ointment on radiodermatitis in a porcine model. Int Wound J 2022; 20:516-528. [PMID: 36008920 PMCID: PMC9885454 DOI: 10.1111/iwj.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/03/2023] Open
Abstract
Radiodermatitis is an inevitable side effect of radiotherapy in cancer treatment and there is currently no consensus on effective drugs for treating the condition. Vitamin B12 is known to be effective for repairing and regenerating damaged skin. However, there are few studies on the use of Vitamin B12 for treating radiodermatitis. This study explored the therapeutic efficacy and mechanism of action of Vitamin B12 ointment on radiodermatitis. A porcine model of grade IV radiodermatitis was established. The ointment was applied for 12 weeks after which histological staining, transmission electron microscopy, RT-qPCR, western blotting, and gene sequencing were performed for the evaluation of specific indicators in skin samples. After 12 weeks of observation, the Vitamin B12 treatment was found to have significantly alleviated radiodermatitis. The treatment also significantly reduced the expression levels of NF-κB, COX-2, IL-6, and TGF-β in the skin samples. The pathways involved in the effects of the treatment were identified by analysing gene expression. In conclusion, Vitamin B12 ointment was found to be highly effective for treating radiodermatitis, with strong anti-radiation, anti-inflammatory, and anti-fibrosis effects. It is thus a promising drug candidate for the treatment of severe radiodermatitis.
Collapse
Affiliation(s)
- Yue‐Chen Zhao
- Department of Radiation OncologyThe Second Hospital of Jilin UniversityJilinChina
| | - Hong‐Yong Wang
- Department of Radiation OncologyThe Second Hospital of Jilin UniversityJilinChina
| | - Yun‐Feng Li
- Department of Radiation OncologyThe Second Hospital of Jilin UniversityJilinChina
| | - Xiao‐Yu Yang
- Department of Orthopedic SurgeryThe Second Hospital of Jilin UniversityJilinChina
| | - Yan Li
- K54, Karolinska University Hospital HuddingeStockholmSweden
| | - Tie‐Jun Wang
- Department of Radiation OncologyThe Second Hospital of Jilin UniversityJilinChina
| |
Collapse
|
4
|
Cloves Regulate Na +-K +-ATPase to Exert Antioxidant Effect and Inhibit UVB Light-Induced Skin Damage in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5197919. [PMID: 34471465 PMCID: PMC8405327 DOI: 10.1155/2021/5197919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to observe the effect of cloves (Syzygium aromaticum (L.) Merr. & L.M. Perry) on the mouse skin using a UVB-induced skin injury mouse model. The serum, liver, and skin indexes of mice were determined by kits, H&E tissue staining, and qPCR assay. The compound composition of cloves was determined by HPLC. The results showed that cloves increased the activity of Na+-K+-ATPase in the skin and then maintained the sodium and potassium pump in the damaged skin muscle membrane. Cloves alleviated the oxidative stress injury induced by UVB irradiation by normalizing the related oxidative stress indexes (T-SOD, CAT, AGEs, and H2O2) in serum and skin. Inhibition of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 and increased activation of anti-inflammatory cytokines IL-4 and IL-10 occurred after treatment with cloves, which ultimately reduced the inflammatory damage to the body. Further results showed that cloves upregulate SOD1, SOD2, CAT, GSH, IL-10, IκB-α, AMPK, SIRT1, LKB1, PGC-1α, APPL1, and FoxO1 and downregulate NF-κB p65, TNF-α, IL-6, and mTOR mRNA expression in the skin tissues of UVB-damaged mice. The results of composition analysis showed that the five most abundant compounds in cloves are rutin, isoquercitrin, ferulic acid, dihydroquercetin, and quercitrin. Cloves regulate the skin sarcomembrane Na+-K+-ATPase through these five compounds, and because they regulate the oxidation, inflammation, and ATP energy consumption of the body, they subsequently protect the skin from UVB damage.
Collapse
|
5
|
Burnett LR, Gabard AR, Robinson M, Bourland JD, Dorand JE, Dozier S, Xiao R, Roy DC, Tytell M. Biomolecular Analysis of Beta Dose-Dependent Cutaneous Radiation Injury in a Porcine Model. Radiat Res 2019; 192:145-158. [PMID: 31166846 DOI: 10.1667/rr14283.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While cutaneous radiation injury (CRI) is generally referenced as a consequence of a nuclear attack, it can also be caused by less dangerous events such as the use of dirty bombs, industrial radiological accidents, or accidental overexposure of beta (β) particle or gamma (γ) radiation sources in medical procedures. Although the gross clinical consequences of these injuries have been well documented, relatively little is known about the molecular changes underlying the progression of pathology. Here we describe a porcine model of cutaneous radiation injury after skin was exposed to strontium-90 b particle at doses of 16-42 Gy and characterize the anatomical and molecular changes over 70 days. The results show that irradiated sites displayed dosedependent increases in erythema and moist desquamation that peaked between days 35 and 42. Dose-dependent histopathological changes were observed, with higher doses exhibiting increased inflammation and epidermal hyperplasia beyond day 35. Furthermore, immunohistochemistry showed that exposure to 37 Gy β-particle radiation decreased epidermal cell proliferation and desmosomal junction proteins at day 70, suggesting compromised epidermal integrity. Metabolomic analysis of biopsies revealed dose- and time-dependent changes as high as 252-fold in several metabolites not previously linked to CRI. These alterations were seen in pathways reflecting protein degradation, oxidative stress, eicosanoid production, collagen matrix remodeling, mitochondrial stress, cell membrane composition and vascular disruption. Taken together, these data show that exposure to high doses of β particle damaged the molecular processes underlying skin integrity to a greater extent and for a longer period of time than has been shown previously. These findings further understanding of radiation-induced skin injury and serve as a foundation for the development and testing of potential therapeutics to treat CRI.
Collapse
Affiliation(s)
| | | | - Mac Robinson
- Department of b Neurobiology and Anatomy, Wake Forest University School of Medicine and Graduate School, Winston-Salem, North Carolina
| | - J Daniel Bourland
- c Department of Radiation Oncology and Physics, Wake Forest University School of Medicine and Graduate School, Winston-Salem, North Carolina
| | - Jennifer E Dorand
- c Department of Radiation Oncology and Physics, Wake Forest University School of Medicine and Graduate School, Winston-Salem, North Carolina
| | - Stephen Dozier
- Department of b Neurobiology and Anatomy, Wake Forest University School of Medicine and Graduate School, Winston-Salem, North Carolina
| | - Roy Xiao
- Department of b Neurobiology and Anatomy, Wake Forest University School of Medicine and Graduate School, Winston-Salem, North Carolina
| | - Daniel C Roy
- a KeraNetics, LLC, Winston-Salem, North Carolina
| | - Michael Tytell
- Department of b Neurobiology and Anatomy, Wake Forest University School of Medicine and Graduate School, Winston-Salem, North Carolina
| |
Collapse
|
6
|
Acevedo CA, Sánchez E, Orellana N, Morales P, Olguín Y, Brown DI, Enrione J. Re-Epithelialization Appraisal of Skin Wound in a Porcine Model Using a Salmon-Gelatin Based Biomaterial as Wound Dressing. Pharmaceutics 2019; 11:pharmaceutics11050196. [PMID: 31027353 PMCID: PMC6571591 DOI: 10.3390/pharmaceutics11050196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 01/04/2023] Open
Abstract
The design of new functional materials for skin tissue engineering is an area of constant research. In this work, a novel wound-dressing biomaterial with a porous structure, previously formulated using salmon-gelatin as main component (called salmon-gelatin biomaterial (SGB)), was tested in vivo using pigs as skin wound models. Four weeks after cutaneous excision and implantation in the animals, the healing process did not show apparent symptoms of inflammation or infection. Interestingly, the temporal evolution of wound size from 100% to around 10% would indicate a faster recovery when SGB was compared against a commercial control. Histological analysis established that wounds treated with SGB presented similar healing and epithelialization profiles with respect to the commercial control. Moreover, vascularized granulation tissue and epithelialization stages were clearly identified, indicating a proliferation phase. These results showed that SGB formulation allows cell viability to be maintained. The latter foresees the development of therapeutic alternatives for skin repair based on SGB fabricated using low cost production protocols.
Collapse
Affiliation(s)
- Cristian A Acevedo
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Elizabeth Sánchez
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Patricio Morales
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Yusser Olguín
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile.
| | - Donald I Brown
- Instituto de Biología, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso 2340000, Chile.
| | - Javier Enrione
- Biopolymer Research and Engineering Lab, Facultad de Medicina, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile.
| |
Collapse
|
7
|
Farhood B, Mortezaee K, Goradel NH, Khanlarkhani N, Salehi E, Nashtaei MS, Najafi M, Sahebkar A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J Cell Physiol 2018; 234:5728-5740. [PMID: 30317564 DOI: 10.1002/jcp.27442] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
Cancer is the second cause of death worldwide. Chemotherapy and radiotherapy are the most common modalities for the treatment of cancer. Experimental studies have shown that inflammation plays a central role in tumor resistance and the incidence of several side effects following both chemotherapy and radiotherapy. Inflammation resulting from radiotherapy and chemotherapy is responsible for adverse events such as dermatitis, mucositis, pneumonitis, fibrosis, and bone marrow toxicity. Chronic inflammation may also lead to the development of second cancer during years after treatment. A number of anti-inflammatory drugs such as nonsteroidal anti-inflammatory agents have been proposed to alleviate chronic inflammatory reactions after radiotherapy or chemotherapy. Curcumin is a well-documented herbal anti-inflammatory agents. Studies have proposed that curcumin can help management of inflammation during and after radiotherapy and chemotherapy. Curcumin targets various inflammatory mediators such as cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor κB (NF-κB), thereby attenuating the release of proinflammatory and profibrotic cytokines, and suppressing chronic production of free radicals, which culminates in the amelioration of tissue toxicity. Through modulation of NF-κB and its downstream signaling cascade, curcumin can also reduce angiogenesis, tumor growth, and metastasis. Low toxicity of curcumin is linked to its cytoprotective effects in normal tissues. This protective action along with the capacity of this phytochemical to sensitize tumor cells to radiotherapy and chemotherapy makes it a potential candidate for use as an adjuvant in cancer therapy. There is also evidence from clinical trials suggesting the potential utility of curcumin for acute inflammatory reactions during radiotherapy such as dermatitis and mucositis.
Collapse
Affiliation(s)
- Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Kim JS, Jang H, Bae MJ, Shim S, Jang WS, Lee SJ, Park S, Lee SS. Comparison of Skin Injury Induced by β- and γ-irradiation in the Minipig Model. ACTA ACUST UNITED AC 2017. [DOI: 10.14407/jrpr.2017.42.4.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Park S, Lee P, Ha WH, Kim HS, Park BR, Kim J, Shim S, Park S, Kim YS, Kim CH, Jin YW. Development of a minipig physical phantom from CT data. JOURNAL OF RADIATION RESEARCH 2017; 58:755-760. [PMID: 28992232 PMCID: PMC5737602 DOI: 10.1093/jrr/rrx036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Quantification of pathological progression of radiation-induced injury is essential in development of treatment methods, and a proper animal model is necessary for relevant radiological and medical studies. A minipig is a current animal model selected because of its similarities to humans in anatomy and pathology. In the present study, a minipig physical phantom was developed using computed tomography (CT) data. For dosimetry purposes, the minipig physical phantom was constructed on a slice-by-slice basis, with an array of holes to accommodate dosimeters. The phantom is constituted of three major organs, i.e. bone, lung, and remaining soft tissue, and the organs are clearly distinguishable on each 20-mm-thick axial slice. The quality of the tissue-equivalent (TE) substitutes was analyzed in terms of the atomic compositions and Hounsfield units (HUs). The density (in g/cm3) and effective atomic number of TE substitutes for the bone, lung, and soft tissue are 1.4 and 7.9, 0.5 and 10.0, and 1.0 and 5.9, respectively. Although the TE substitutes have slightly different physical properties, we think the phantom is acceptable because the HU values of the TE substitutes lie in the HU range of real tissues.
Collapse
Affiliation(s)
- Sooyeun Park
- Laboratory of Health Physics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-gil, Nowon-gu 01812, Seoul, Republic of Korea
- Department of Nuclear Engineering, Hanyang University, 04763, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Pilsoo Lee
- Laboratory of Health Physics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-gil, Nowon-gu 01812, Seoul, Republic of Korea
| | - Wi-Ho Ha
- Laboratory of Health Physics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-gil, Nowon-gu 01812, Seoul, Republic of Korea
| | - Han Sung Kim
- Laboratory of Health Physics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-gil, Nowon-gu 01812, Seoul, Republic of Korea
| | - Byeong Ryong Park
- Laboratory of Health Physics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-gil, Nowon-gu 01812, Seoul, Republic of Korea
| | - Jae Seok Kim
- Laboratory of Health Physics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-gil, Nowon-gu 01812, Seoul, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-gil, Nowon-gu 01812, Seoul, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-gil, Nowon-gu 01812, Seoul, Republic of Korea
| | - Young-su Kim
- Department of Nuclear Engineering, Hanyang University, 04763, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Chan Hyeong Kim
- Department of Nuclear Engineering, Hanyang University, 04763, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Young-Woo Jin
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-gil, Nowon-gu 01812, Seoul, Republic of Korea
| |
Collapse
|
10
|
Kim J, Park S, Jeon BS, Jang WS, Lee SJ, Son Y, Rhim KJ, Lee SI, Lee SS. Therapeutic effect of topical application of curcumin during treatment of radiation burns in a mini-pig model. J Vet Sci 2017; 17:435-444. [PMID: 27030193 PMCID: PMC5204020 DOI: 10.4142/jvs.2016.17.4.435] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/02/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022] Open
Abstract
Curcumin protects the skin against radiation-induced epidermal damage and prevents morphological changes induced by irradiation skin, thereby maintaining the epidermal thickness and cell density of basal layers. In this study, the effects of topical curcumin treatment on radiation burns were evaluated in a mini-pig model. Histological and clinical changes were observed five weeks after radiation exposure to the back (60Co gamma-radiation, 50 Gy). Curcumin was applied topically to irradiated skin (200 mg/cm2) twice a day for 35 days. Curcumin application decreased the epithelial desquamation after irradiation. Additionally, when compared to the vehicle-treated group, the curcumin-treated group showed reduced expression of cyclooxygenase-2 and nuclear factor-kappaB. Furthermore, irradiation prolonged healing of biopsy wounds in the exposed area, whereas curcumin treatment stimulated wound healing. These results suggest that curcumin can improve epithelial cell survival and recovery in the skin and therefore be used to treat radiation burns.
Collapse
Affiliation(s)
- Joongsun Kim
- Laboratory of Radiation Exposure & Therapeutics, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul 01812, Korea.,Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan 46033, Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Byung-Suk Jeon
- Laboratory of Radiation Exposure & Therapeutics, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Won-Seok Jang
- Laboratory of Radiation Exposure & Therapeutics, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Yeonghoon Son
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan 46033, Korea
| | - Kyung-Jin Rhim
- Department of Dermatology, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul 01812, Korea
| | - Soong In Lee
- College of Oriental Medicine, Dongshin Univiersity, Naju 58245, Korea
| | - Seung-Sook Lee
- Laboratory of Radiation Exposure & Therapeutics, Korea Institute of Radiological & Medical Sciences (KIRAMS), Seoul 01812, Korea
| |
Collapse
|
11
|
Radiation-induced eosinophilic, polymorphic, and pruritic eruption in a pig skin model. Lab Anim Res 2015; 31:204-8. [PMID: 26755924 PMCID: PMC4707149 DOI: 10.5625/lar.2015.31.4.204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022] Open
Abstract
Eosinophilic, polymorphic and pruritic eruption associated with radiotherapy (EPPER) can occur in cancer patients after irradiation. In this study, we characterized the clinical and histopathological features of pig skin that developed widespread polymorphic and pruritic skin lesions following localized 50 Gy gamma-irradiation. The pigs developed pruritus 5-7 weeks after irradiation, and infiltration of the dermis by eosinophils was detected 4-7 weeks after irradiation. The irradiated animals also showed transiently increased numbers of peripheral eosinophils 5-7 weeks after treatment. Irradiation induced desquamation after 2-4 weeks, which and the desquamation gradually resolved after 7 weeks. These pathological changes correspond to those seen in irradiated human skin, indicating that this model could be useful for elucidating the pathogenesis of EPPER and for developing therapeutic and prophylactic methods.
Collapse
|