1
|
Bai L, Soya M, Ichikawa M, Matsuura R, Arimura Y, Wada S, Aida Y. Antigenicity of subregions of recombinant bovine leukemia virus (BLV) glycoprotein gp51 for antibody detection. J Virol Methods 2023; 311:114644. [PMID: 36332713 DOI: 10.1016/j.jviromet.2022.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Bovine leukemia virus (BLV) is an enveloped virus, found worldwide that can infect cattle and induce many subclinical symptoms and malignant tumors. BLV infection causes severe economic losses in the cattle industry. The identification of BLV-infected cattle for segregation or elimination would be the most effective way to halt the spread of BLV infection on farms, owing to the lack of effective treatments and vaccines. Therefore, antibody detection against the viral glycoprotein gp51 is an effective method for diagnosing BLV-infected animals. In this study, ten different subregions of gp51 containing a common B cell epitope are vital for developing antigens as epitope-driven vaccine design and immunological assays. Such antigens were produced in Escherichia coli expression system to react with antibodies in the serum from BLV-infected cattle and compete for antigenicity. Recombinant His-gp5156-110 and gp5133-301(full) had the same sensitivity in BLV-positive sera, indicating that antibodies responded to the limited subregion of viral gp51, a common B cell epitope. This finding provides significant information for antigen selection in BLV to use in antibody detection assays. Further studies are needed to evaluate the antigenicity of His-gp5156-110 and gp5133-301(full) as antigens for antibody detection assays using a larger number of bovine serum samples.
Collapse
Affiliation(s)
- Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 3510198, Japan; Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Saitama 3510198, Japan; Graduate School of Science and Engineering, Iwate University, Morioka, Iwate 0208551, Japan
| | - Mariko Soya
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 3510198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 1138657, Japan
| | - Minori Ichikawa
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 3510198, Japan; Host Defense for Animals. Nippon Veterinary and Life Science University, Musashino, Tokyo 1808602, Japan
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 3510198, Japan; Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Saitama 3510198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 1138657, Japan
| | - Yutaka Arimura
- Host Defense for Animals. Nippon Veterinary and Life Science University, Musashino, Tokyo 1808602, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Saitama 3510198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 3510198, Japan; Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Saitama 3510198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 1138657, Japan.
| |
Collapse
|
2
|
Triple Immunochromatographic System for Simultaneous Serodiagnosis of Bovine Brucellosis, Tuberculosis, and Leukemia. BIOSENSORS-BASEL 2019; 9:bios9040115. [PMID: 31569488 PMCID: PMC6956381 DOI: 10.3390/bios9040115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 11/17/2022]
Abstract
An immunochromatographic test system has been developed for the simultaneous rapid multiplex serodiagnostics of bovine brucellosis, tuberculosis, and leukemia. The test system is based on the use of a conjugate of gold nanoparticles with the chimeric protein Cysteine-A/G and three analytical zones with immobilized pathogen antigens: Brucella abortus lipolysaccharide, recombinant proteins MPB64 and MPB83-MPB63 of Mycobacterium bovis, and recombinant protein p24 of the bovine leukemia virus. Prototypes of the test system were tested on 98 samples of sera from healthy and infected animals. The diagnostic sensitivity of the developed test system was 92% for brucellosis, 92% for tuberculosis, and 96% for leukemia. False positive test results were not observed.
Collapse
|
3
|
Kim H, Kim AY, Kim JS, Lee JM, Lee HY, Cheong KM, Kim B, Park CK, Ko YJ. A simple and rapid assay to evaluate purity of foot-and-mouth disease vaccine before animal experimentation. Vaccine 2019; 37:3825-3831. [PMID: 31138453 DOI: 10.1016/j.vaccine.2019.05.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 11/19/2022]
Abstract
Currently, foot-and-mouth disease (FMD) vaccine purity is tested in cattle to detect antibodies against the non-structural protein (NSP) after repeated immunization with the final vaccine product. In case of vaccine failure, the manufacturing company would suffer significant economic loss. To prevent such unfortunate losses with the final vaccine product, in vitro testing is required to quantitate an NSP antigen during the manufacturing process prior to animal experiments. A novel lateral-flow assay device was developed using a monoclonal antibody (MAb) against the 3B NSP. To determine the minimal amount of NSP required to elicit antibodies in livestock, goats were immunized several times with various concentrations of either the recombinant 3AB (rec.3AB) protein or FMD virus culture supernatant. Antibodies against 3AB were elicited after a second immunization with 10.6 ng to 42.5 ng of rec.3AB and a third immunization with a 10-fold diluted FMD virus culture supernatant in goats. The lateral-flow assay device detected the minimal amount of rec.3AB and native NSP in FMD virus culture supernatant required to induce NSP antibodies in goats. The in vitro assay device is simple and economical, provides rapid results, and should be useful for FMD vaccine-manufacturing companies prior to conducting animal experiments to test the vaccine purity.
Collapse
Affiliation(s)
- Hyejin Kim
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do 39660, Republic of Korea; College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ah-Young Kim
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do 39660, Republic of Korea
| | - Jae-Seok Kim
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do 39660, Republic of Korea
| | - Jung-Min Lee
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do 39660, Republic of Korea
| | - Hye-Young Lee
- Median Diagnostics, Chuncheon, Kangwon-do 24399, Republic of Korea
| | | | - Byounghan Kim
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do 39660, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Young-Joon Ko
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do 39660, Republic of Korea.
| |
Collapse
|